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About

This section briefly introduces the authors, the coverage of this book, the technical skills you'll 
need to get started, and the hardware and software requirements required to complete all of 
the included activities and exercises.

Preface

>
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About the Book
Understanding and finding patterns in data has become one of the most important ways 
to improve business decisions. If you know the basics of SQL, but don't know how to 
use it to gain business insights from data, this book is for you.

SQL for Data Analytics covers everything you need to progress from simply knowing 
basic SQL to telling stories and identifying trends in data. You'll be able to start 
exploring your data by identifying patterns and unlocking deeper insights. You'll also 
gain experience working with different types of data in SQL, including time series, 
geospatial, and text data. Finally, you'll learn how to become productive with SQL with 
the help of profiling and automation to gain insights faster.

By the end of the book, you'll able to use SQL in everyday business scenarios efficiently 
and look at data with the critical eye of an analytics professional.

About the Authors

Upom Malik is a data scientist who has worked in the technology industry for over 6 
years. He has a master's degree in chemical engineering from Cornell University and a 
bachelor's degree in biochemistry from Duke University. He uses SQL and other tools 
to solve interesting challenges in finance, energy, and consumer technologies. While 
working on analytical problems, he has lived out of a suitcase and spent the last year 
as a digital nomad. Outside of work, he likes to read, hike the trails of the Northeastern 
United States, and savor ramen bowls from around the world.

Matt Goldwasser is a lead data scientist at T. Rowe Price. He enjoys demystifying data 
science for business stakeholders and deploying production machine learning solutions. 
Matt has been using SQL to perform data analytics in the financial industry for the 
last 8 years. He has a bachelor's degree in mechanical and aerospace engineering from 
Cornell University. In his spare time, he enjoys teaching his infant son data science.

Benjamin Johnston is a senior data scientist for one of the world's leading data-driven 
medtech companies and is involved in the development of innovative digital solutions 
throughout the entire product development pathway, from problem definition to 
solution research and development, through to final deployment. He is currently 
completing his PhD in machine learning, specializing in image processing and deep 
convolutional neural networks. He has more than 10 years' experience in medical device 
design and development, working in a variety of technical roles, and holds first-class 
honors bachelor's degrees in both engineering and medical science from the University 
of Sydney, Australia.
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Learning Objectives

By the end of this book, you will be able to:

•	 Use SQL to summarize and identify patterns in data

•	 Apply special SQL clauses and functions to generate descriptive statistics

•	 Use SQL queries and subqueries to prepare data for analysis

•	 Perform advanced statistical calculations using the window function

•	 Analyze special data types in SQL, including geospatial data and time data

•	 Import and export data using a text file and PostgreSQL

•	 Debug queries that won't run

•	 Optimize queries to improve their performance for faster results

Audience

If you're a database engineer looking to transition into analytics, or a backend engineer 
who wants to develop a deeper understanding of production data, you will find this 
book useful. This book is also ideal for data scientists or business analysts who want 
to improve their data analytics skills using SQL. Knowledge of basic SQL and database 
concepts will aid in understanding the concepts covered in this book.

Approach

SQL for Data Analysis perfectly balances theory and practical exercises and provides a 
hands-on approach to analyzing data. It focuses on providing practical instruction for 
both SQL and statistical analysis so that you can better understand your data. The book 
takes away the crumbs and focuses on being practical. It contains multiple activities 
that use real-life business scenarios for you to practice and apply your new skills in a 
highly relevant context.

Hardware Requirements

For the optimal experience, we recommend the following hardware configuration:

•	 Processor: Intel Core i5 or equivalent

•	 Memory: 4 GB of RAM

•	 Storage: 5 GB of available space
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Software Requirements

We also recommend that you have the following software installed in advance:

•	 OS: Windows 7 SP1 64-bit, Windows 8.1 64-bit, Windows 10 64-bit, Linux (Ubuntu 
16.04 or later, Debian, Red Hat, or Suse), or the latest version of macOS

•	 PostgreSQL 10.9 (https://www.postgresql.org/download/)

•	 Anaconda Python 3.7 (https://www.anaconda.com/distribution/#download-
section)

•	 Git 2 or later

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"It is worth noting here that the formatting can look a little messy for the \copy 
command, because it does not allow for commands with new lines. A simple way around 
this is to create a view containing your data before the \copy command and then drop 
the view after your \copy command has finished."

A block of code is set as follows:

CREATE TEMP VIEW customers_sample AS (

    SELECT *

    FROM customers

    LIMIT 5

);

\copy customers_sample TO 'my_file.csv' WITH CSV HEADER

DROP VIEW customers_sample;

Installation and Setup

Each great journey begins with a humble step, and our upcoming adventure in the land 
of data wrangling is no exception. Before we can do awesome things with data, we need 
to be prepared with the most productive environment. In this short section, we shall 
see how to do that.

https://www.postgresql.org/download/
https://www.anaconda.com/distribution/#download-section
https://www.anaconda.com/distribution/#download-section
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Installing PostgreSQL 10.9

Installing on Windows:

Download the PostgreSQL version 10 installer via https://www.postgresql.org/
download/windows/ and follow the prompts.

Installing on Linux:

You can install PostgreSQL on Ubuntu or Debian Linux via the command line using: 

sudo apt-get install postgresl-11

Installing on macOS:

Download the PostgreSQL version 10 installer via https://www.postgresql.org/
download/macosx/ and follow the prompts.

Installing Python

Installing Python on Windows:

1.	 Find your desired version of Python on the official installation page at https://
www.anaconda.com/distribution/#windows.

2.	 Ensure you select Python 3.7 from the download page.

3.	 Ensure that you install the correct architecture for your computer system; that is, 
either 32-bit or 64-bit. You can find out this information in the System Properties 
window of your OS.

4.	 After you download the installer, simply double-click on the file and follow the 
user-friendly prompts on-screen.

Installing Python on Linux:

To install Python on Linux, you have a couple of good options:

1.	 Open Command Prompt and verify that p\Python 3 is not already installed by 
running python3 --version.

2.	 To install Python 3, run this:

sudo apt-get update
sudo apt-get install python3.7

3.	 If you encounter problems, there are numerous sources online that can help you 
troubleshoot the issue.

4.	 Install Anaconda Linux by downloading the installer from https://www.anaconda.
com/distribution/#linux and following the instructions.

https://www.postgresql.org/download/windows/
https://www.postgresql.org/download/windows/
https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#windows
https://www.anaconda.com/distribution/#linux
https://www.anaconda.com/distribution/#linux
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Installing Python on macOS:

Similar to Linux, you have a couple of methods for installing Python on a Mac. To install 
Python on macOS X, do the following:

1.	 Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the open 
search box, and hit Enter.

2.	 Install Xcode through the command line by running xcode-select --install.

3.	 The easiest way to install Python 3 is using Homebrew, which is installed 
through the command line by running ruby -e "$(curl -fsSL https://raw.
githubusercontent.com/Homebrew/install/master/install)".

4.	 Add Homebrew to your $PATH environment variable. Open your profile in the 
command line by running sudo nano ~/.profile and inserting export PATH="/usr/
local/opt/python/libexec/bin:$PATH" at the bottom.

5.	 The final step is to install Python. In the command line, run brew install python.

6.	 Again, you can also install Python via the Anaconda installer available from https://
www.anaconda.com/distribution/#macos.

Installing Git

Installing Git on Windows or macOS X:

Git for Windows/Mac can be downloaded and installed via https://git-scm.com/. 
However, for an improved user experience, it is recommended that you install Git 
through an advanced client such as GitKraken (https://www.gitkraken.com/).

Installing Git on Linux:

Git can be easily installed via the command line:

sudo apt-get install git

If you prefer a graphical user interface, GitKraken (https://www.gitkraken.com/) is also 
available for Linux.

https://www.anaconda.com/distribution/#macos
https://www.anaconda.com/distribution/#macos
https://git-scm.com/
https://www.gitkraken.com/
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Loading the Sample Databases

The vast majority of exercises in this book use a sample database, sqlda, which contains 
fabricated data for a fictional electric vehicle company called ZoomZoom. To install the 
database on PostgreSQL, copy the data.dump file from the Datasets folder in the GitHub 
repository of the book (https://github.com/TrainingByPackt/SQL-for-Data-Analytics/
tree/master/Datasets). Then, load the data.dump file from a command line using the 
command:

psql < data.dump

Here, psql is the postgreSQL client.

Running SQL Files

Commands and statements can be executed via a *.sql file from the command line 
using the command:

psql < commands.sql

Alternatively, they can be executed via the SQL interpreter:

database=#

Additional Resources

The code bundle for this book is also hosted on GitHub at https://github.com/
TrainingByPackt/SQL-for-Data-Analytics. We also have other code bundles from our 
rich catalog of books and videos available at https://github.com/PacktPublishing/. 
Check them out!

You can download the graphic bundle for the book from here: https://github.com/
TrainingByPackt/SQL-for-Data-Analytics/blob/master/Graphic%20Bundle/
Graphic%20Bundle_ColorImages.pdf.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics
https://github.com/TrainingByPackt/SQL-for-Data-Analytics
https://github.com/PacktPublishing/
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Graphic%20Bundle/Graphic%20Bundle_ColorImages.pdf
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Graphic%20Bundle/Graphic%20Bundle_ColorImages.pdf
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Graphic%20Bundle/Graphic%20Bundle_ColorImages.pdf




Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain data and its types

•	 Classify data based on its characteristics

•	 Calculate basic univariate statistics about data

•	 Identify outliers

•	 Use bivariate analysis to understand the relationship between two variables

In this chapter, we will cover the basics of data analytics and statistics. You will also learn how to 
identify outliers and gain an understanding of the relationship between variables.

Understanding and 
Describing Data

1
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Introduction
Data has fundamentally transformed the 21st century. Thanks to easy access to 
computers, companies and organizations have been able to change the way they work 
with larger and more complex datasets. Using data, insights that would have been 
virtually impossible to find 50 years ago can now be found with just a few lines of 
computer code. In this chapter, we will discuss what data is and how data analysis can 
be used to unlock insights and recognize patterns.

The World of Data
Let's start with the first question: what is data? Data (the plural of the word datum) can 
be thought of as recorded measurements of something in the real world. For example, 
a list of heights is data – that is, height is a measure of the distance between a person's 
head and their feet. We usually call that something the data is describing a unit of 
observation. In the case of these heights, a person is the unit of observation.

As you can imagine, there is a lot of data that we can gather to describe a  
person – including their age, weight, whether they are a smoker, and more. One or 
more of these measurements used to describe one specific unit of observation is called 
a data point, and each measurement in a data point is called a variable (this is also  
often referred to as a feature). When you have several data points together, you  
have a dataset.

Types of Data

Data can also be broken down into two main categories: quantitative and qualitative: 

Figure 1.1: The classification of types of data

Quantitative data is a measurement that can be described as a number; qualitative data 
is data that is described by non-numerical values, such as text. Your height is data that 
would be described as quantitative. However, describing yourself as either a "smoker" or 
a "non-smoker" would be considered qualitative data.
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Quantitative data can be further classified into two subcategories: discrete and 
continuous. Discrete quantitative values are values that can take on a fixed level of 
precision – usually integers. For example, the number of surgeries you have had in 
your life is a discrete value – you can have 0, 1, or more surgeries, but you cannot have 
1.5 surgeries. A continuous variable is a value that, in theory, could be divided with an 
arbitrary amount of precision. For example, your body mass could be described with 
arbitrary precision to be 55, 55.3, 55.32, and so on. In practice, of course, measuring 
instruments limit our precision. However, if a value could be described with higher 
precision, then it is generally considered continuous.

Note 

Qualitative data can generally be converted into quantitative data, and quantitative 
data can also be converted into qualitative data. This is explained later in the 
chapter using an example.

Let's think about this using the example of being a "smoker" versus a "non-smoker". 
While you can describe yourself to be in the category of "smoker" or "non-smoker", 
you could also reimagine these categories as answers to the statement "you smoke 
regularly", and then use the Boolean values of 0 and 1 to represent "true" and "false," 
respectively.

Similarly, in the opposite direction, quantitative data, such as height, can be converted 
into qualitative data. For example, instead of thinking of an adult's height as a number in 
inches or centimeters (cm), you can classify them into groups, with people greater than 
72 inches (that is, 183 cm) in the category "tall," people between 63 inches and 72 inches 
(that is, between 160 and 183 cm) as "medium," and people shorter than 63 inches (that 
is, 152 cm) as "short."

Data Analytics and Statistics

Raw data, by itself, is simply a group of values. However, it is not very interesting in this 
form. It is only when we start to find patterns in the data and begin to interpret them 
that we can start to do interesting things such as make predictions about the future and 
identify unexpected changes. These patterns in the data are referred to as information. 
Eventually, a large organized collection of persistent and extensive information and 
experience that can be used to describe and predict phenomena in the real world 
is called knowledge. Data analysis is the process by which we convert data into 
information and, thereafter, knowledge. When data analysis is combined with making 
predictions, we then have data analytics.
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There are a lot of tools that are available to make sense of data. One of the most 
powerful tools in the toolbox of data analysis is using mathematics on datasets. One of 
these mathematical tools is statistics.

Types of Statistics

Statistics can be further divided into two subcategories: descriptive statistics and 
inferential statistics.

Descriptive statistics are used to describe data. Descriptive statistics on a single 
variable in a dataset are referred to as univariate analysis, while descriptive statistics 
that look at two or more variables at the same time are referred to as multivariate 
analysis.

In contrast, inferential statistics think of datasets as a sample, or a small portion of 
measurements from a larger group called a population. For example, a survey of 10,000 
voters in a national election is a sample of the entire population of voters in a country. 
Inferential statistics are used to try to infer the properties of a population, based on the 
properties of a sample.

Note

In this book, we will primarily be focusing on descriptive statistics. For more 
information on inferential statistics, please refer to a statistics textbook, such as 
Statistics, by David Freedman, Robert Pisani, and Roger Purves.

Example:

Imagine that you are a health policy analyst and are given the following dataset with 
information about patients:

Figure 1.2: Healthcare data
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When given a dataset, it's often helpful to classify the underlying data. In this case, the 
unit of observation for the dataset is an individual patient, because each row represents 
an individual observation, which is a unique patient. There are 10 data points, each with 
5 variables. Three of the columns, Year of Birth, Height, and Number of Doctor Visits, 
are quantitative because they are represented by numbers. Two of the columns, Eye 
Color and Country of Birth, are qualitative.

Activity 1: Classifying a New Dataset

In this activity, we will classify the data in a dataset. You are about to start a job in a 
new city at an up-and-coming start-up. You're excited to start your new job, but you've 
decided to sell all your belongings before you head off. This includes your car. You're 
not sure at what price to sell it for, so you decide to collect some data. You ask some 
friends and family who recently sold their cars what the make of the car was, and how 
much they sold the cars for. Based on this information, you now have a dataset.

The data is as follows:

Figure 1.3: Used car sales data

Steps to follow:

1.	 Determine the unit of observation.

2.	 Classify the three columns as either quantitative or qualitative.

3.	 Convert the Make column into quantitative data columns.

Note

The solution for this activity can be found on page 314.
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Methods of Descriptive Statistics
As previously mentioned, descriptive statistics is one of the ways in which we can 
analyze data in order to understand it. Both univariate and multivariate analysis can 
give us an insight into what might be going on with a phenomenon. In this section, we 
will take a closer look at the basic mathematical techniques that we can use to better 
understand and describe a dataset.

Univariate Analysis

As previously mentioned, one of the main branches of statistics is univariate analysis. 
These methods are used to understand a single variable in a dataset. In this section, we 
will look at some of the most common univariate analysis techniques.

Data Frequency Distribution

The distribution of data is simply a count of the number of values that are in a dataset. 
For example, let's say that we have a dataset of 1,000 medical records, and one of the 
variables in the dataset is eye color. If we look at the dataset and find that 700 people 
have brown eyes, 200 people have green eyes, and 100 people have blue eyes, then we 
have just described the distribution of the dataset. Specifically, we have described the 
absolute frequency distribution. If we were to describe the counts not by the actual 
number of occurrences in the dataset, but as the proportion of the total number of data 
points, then we are describing its relative frequency distribution. In the preceding eye 
color example, the relative frequency distribution would be 70% brown eyes, 20% green 
eyes, and 10% blue eyes.

It's easy to calculate a distribution when the variable can take on a small number of 
fixed values such as eye color. But what about a quantitative variable that can take on 
many different values, such as height? The general way to calculate distributions for 
these types of variables is to make interval "buckets" that these values can be assigned 
to and then calculate distributions using these buckets. For example, height can be 
broken down into 5-cm interval buckets to make the following absolute distribution 
(please refer to Figure 1.6). We can then divide each row in the table by the total number 
of data points (that is, 10,000) and get the relative distribution.

Another useful thing to do with distributions is to graph them. We will now create a 
histogram, which is a graphical representation of the continuous distribution using 
interval buckets.



Methods of Descriptive Statistics | 7

Exercise 1: Creating a Histogram

In this exercise, we will use Microsoft Excel to create a histogram. Imagine, as a 
healthcare policy analyst, that you want to see the distribution of heights to note any 
patterns. To accomplish this task, we need to create a histogram.

Note

We can use spreadsheet software such as Excel, Python, or R to create histograms. 
For convenience, we will use Excel. Also, all the datasets used in this chapter, can 
be found on GitHub: https://github.com/TrainingByPackt/SQL-for-Data-Analytics/
tree/master/Datasets.

Perform the following steps:

1.	 Open Microsoft Excel to a blank workbook:

Figure 1.4: A blank Excel workbook

2.	 Go to the Data tab and click on From Text.

3.	 You can find the heights.csv dataset file in the Datasets folder of the GitHub 
repository. After navigating to it, click on OK.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
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4.	 Choose the Delimited option in the Text Import Wizard dialog box, and make sure 
that you start the import at row 1. Now, click on Next:

Figure 1.5: Selecting the Delimited option

5.	 Select the delimiter for your file. As this file is only one column, it has no 
delimiters, although CSVs traditionally use commas as delimiters (in future, use 
whatever is appropriate for your dataset). Now, click on Next.

6.	 Select General for the Column Data Format. Now, click on Finish.

7.	 For the dialog box asking Where you want to put the data?, select Existing Sheet, 
and leave what is in the textbox next to it as is. Now, click on OK.

8.	 In column C, write the numbers 140, 145, and 150 in increments of 5 all the way to 
220 in cells C2 to C18, as seen in Figure 1.6:
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Figure 1.6: Entering the data into the Excel sheet
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9.	 Under the Data tab, click on Data Analysis (if you don't see the Data Analysis tab, 
follow these instructions to install it: https://support.office.com/en-us/article/
load-the-analysis-toolpak-in-excel-6a63e598-cd6d-42e3-9317-6b40ba1a66b4).

10.	 From the selection box that pops up, select Histogram. Now, click on OK. 

11.	 For Input Range, click on the selection button in the far-right side of the textbox. 
You should be returned to the Sheet1 worksheet, along with a blank box with a 
button that has a red arrow in it. Drag and highlight all the data in Sheet1 from A2 
to A10001. Now, click on the arrow with the red button.

12.	 For Bin Range, click on the selection button in the far-right side of the textbox. 
You should be returned to the Sheet1 worksheet, along with a blank box with a 
button that has a red arrow in it. Drag and highlight all the data in Sheet1 from C2 
to C18. Now, click on the arrow with the red button.

13.	 Under Output Options, select New Worksheet Ply, and make sure Chart Output is 
marked, as seen in Figure 1.7. Now, click on OK:

Figure 1.7: Selecting New Worksheet Ply
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14.	 Click on Sheet2. Find the graph and double-click on the title where it says 
Histogram. Type the word Heights. You should produce a graph that is similar to 
the one in the following diagram:

Figure 1.8: Height distribution for adult males

Looking at the shape of the distribution can help you to find interesting patterns. 
Notice here the symmetric bell-shaped curl of this distribution. This distribution is 
often found in many datasets and is known as the normal distribution. This book won't 
go into too much detail about this distribution but keep an eye out for it in your data 
analysis – it shows up quite often.
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Quantiles

One way to quantify data distribution numerically is to use quantiles. N-quantiles are 
a set of n-1 points used to divide a variable into n groups. These points are often called 
cut points. For example, a 4-quantile (also referred to as quartiles) is a group of three 
points that divide a variable into four, approximately equal groups of numbers. There 
are several common names for quantiles that are used interchangeably, and these are as 
follows:

Figure 1.9: Common names for n-quantiles

The procedure for calculating quantiles actually varies from place to place. We will 
use the following procedure to calculate the n-quantiles for d data points for a single 
variable: 

1.	 Order the data points from lowest to highest.

2.	 Determine the number n of n-quantiles you want to calculate and the number of 
cut points, n-1.

3.	 Determine what number k cut point you want to calculate, that is, a number from 1 
to n-1. If you are starting the calculation, set k equal to 1.

4.	 Find the index, i, for the k-th cut point using the following equation:

Figure 1.10: The index
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5.	 If i calculated in number 3 is a whole number, simply pick that numbered item 
from the ordered data points. If the k-th cut point is not a whole number, find the 
numbered item that is lower than i, and the one after it. Multiply the difference 
between the numbered item and the one after it, and then multiply by the decimal 
portion of the index. Add this number to the lowest numbered item.

6.	 Repeat Steps 2 to 5 with different values of k until you have calculated all the cut 
points.

These steps are a little complicated to understand by themselves, so let's work through 
an exercise. With most modern tools, including SQL, computers can quickly calculate 
quantiles with built-in functionality.

Exercise 2: Calculating the Quartiles for Add-on Sales

Before you start your new job, your new boss wants you to look at some data before 
you start on Monday, so that you have a better sense of one of the problems you will be 
working on – that is, the increasing sales of add-ons and upgrades for car purchases. 
Your boss sends over a list of 11 car purchases and how much they have spent on 
add-ons and upgrades to the base model of the new ZoomZoom Model Chi. In this 
exercise, we will classify the data and calculate the quartiles for the car purchase using 
Excel. The following are the values of Add-on Sales ($): 5,000, 1,700, 8,200, 1,500, 3,300, 
9,000, 2,000, 0, 0, 2,300, and 4,700.

Note

All the datasets used in this chapter, can be found on GitHub: https://github.com/
TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets.

Perform the following steps to complete the exercise:

1.	 Open Microsoft Excel to a blank workbook.

2.	 Go to the Data tab and click on From Text.

3.	 You can find the auto_upgrades.csv dataset file in the Datasets folder of the 
GitHub repository. Navigate to the file and click on OK.

4.	 Choose the Delimited option in the Text Import Wizard dialog box, and make sure 
to start the import at row 1. Now, click on Next.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
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5.	 Select the delimiter for your file. As this file is only one column, it has no 
delimiters, although CSVs traditionally use commas as delimiters (in future, use 
whatever is appropriate for your dataset). Now, click on Next.

6.	 Select General for the Column Data Format. Now, click on Finish.

7.	 For the dialog box asking Where do you want to put the data?, select Existing 
Sheet, and leave what is in the textbox next to it as is. Now, click on OK.

8.	 Click on cell A1. Then, click on the Data tab, and then click on Sort from the tab.

9.	 A sorted dialog box will pop up. Now, click on OK. The values will now be sorted 
from lowest to highest. The list in Figure 1.11 shows the sorted values:

Figure 1.11: The Add-on Sales figures sorted
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10.	 Now, determine the number of n-quantiles and cut points you need to calculate. 
Quartiles are equivalent to 4-tiles, as seen in Figure 1.9. Because the number of cut 
points is just 1 less than the number of n-quantiles, we know there will be 3 cut 
points.

11.	 Calculate the index for the first cut point. In this case, k=1; d, the number of data 
points, equals 10; and n, the number of n-quantiles, equals 4. Plugging this into the 
equation from Figure 1.12, we get 3.5:

12.	 Because index 3.5 is a non-integer, we first find the third and fourth items, which 
are 1,500 and 1,700, respectively. We find the difference between them, which is 
200, and then multiply this by the decimal portion of 0.5, yielding 100. We add this 
to the third numbered item, 1,500, and get 1,600.

13.	 Repeat Steps 2 to 5 for k=2 and k=4 to calculate the second and third quartiles. You 
should get 2,300 and 4,850, respectively.

Figure 1.12: Calculating the index for the first cut point

In this exercise, we learned how to classify the data and calculate the quartiles using 
Excel.
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Central Tendency

One of the common questions asked of a variable in a dataset is what a typical value for 
that variable is. This value is often described as the central tendency of the variable. 
There are many numbers calculated from a dataset that are often used to describe its 
central tendency, each with their own advantages and disadvantages. Some of the ways 
to measure central tendency include the following:

•	 Mode: The mode is simply the value that comes up most often in the distribution 
of a variable. In Figure 1.2, the eye color example, the mode would be "brown 
eyes," because it occurs the most often in the dataset. If multiple values are tied 
for the most common variable, then the variable is called multimodal and all of 
the highest values are reported. If no value is repeated, then there is no mode for 
those sets of values. Mode tends to be useful when a variable can take on a small, 
fixed number of values. However, it is problematic to calculate when a variable 
is a continuous quantitative variable, such as in our height problem. With these 
variables, other calculations are more appropriate for determining the central 
tendency.

•	 Average/Mean: The average of a variable (also called the mean) is the value 
calculated when you take the sum of all values of the variable and divide by the 
number of data points. For example, let's say you had a small dataset of ages: 26, 
25, 31, 35, and 29. The average of these ages would be 29.2, because that is the 
number you get when you sum the 5 numbers and then divide by 5, that is, the 
number of data points. The mean is easy to calculate, and generally does a good 
job of describing a "typical" value for a variable. No wonder it is one of the most 
commonly reported descriptive statistics in literature. The average as a central 
tendency, however, suffers from one major drawback – it is sensitive to outliers. 
Outliers are data that are significantly different in value from the rest of the 
data and occur very rarely. Outliers can often be identified by using graphical 
techniques (such as scatterplots and box plots) and identifying any data points that 
are very far from the rest of the data. When a dataset has an outlier, it is called a 
skewed dataset. Some common reasons why outliers occur include unclean data, 
extremely rare events, and problems with measurement instruments. Outliers 
often skew the average to a point when they are no longer representative of a 
typical value in the data.



Methods of Descriptive Statistics | 17

•	 Median: The median (also called the second quartile and the fiftieth percentile) is 
sort of a strange measure of central tendency, but has some serious advantages 
compared with average. To calculate median, take the numbers for a variable 
and sort from the lowest to the highest, and then determine the middle number. 
For an odd number of data points, this number is simply the middle value of the 
ordered data. If there are an even number of data points, then take the average of 
the two middle numbers.

While the median is a bit unwieldy to calculate, it is less affected by outliers, 
unlike mean. To illustrate this fact, we will calculate the median of the skewed age 
dataset of 26, 25, 31, 35, 29, and 82. This time, when we calculate the median of the 
dataset, we get the value of 30. This value is much closer to the typical value of the 
dataset than the average of 38. This robustness toward outliers is one of the major 
'reasons why a median is calculated.

As a general rule, it is a good idea to calculate both the mean and median of 
a variable. If there is a significant difference in the value of the mean and the 
median, then the dataset may have outliers.

Exercise 3: Calculating the Central Tendency of Add-on Sales

In this exercise, we will calculate the central tendency of the given data. To better 
understand the Add-on Sales data, you will need to gain an understanding of what the 
typical value for this variable is. We will calculate the mode, mean, and median of the 
Add-on Sales data. Here is the data for the 11 cars purchased: 5,000, 1,700, 8,200, 1,500, 
3,300, 9,000, 2,000, 0, 0, 2,300, and 4,700.

Perform the following steps to implement the exercise:

1.	 To calculate the mode, find the most common value. Because 0 is the most 
common value in the dataset, the mode is 0.

2.	 To calculate the mean, sum the numbers in Add-on Sales, which should equal 
37,700. Then, divide the sum by the number of values, 11, and you get the mean of 
3,427.27.
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3.	 Finally, calculate the median by sorting the data, as shown in Figure 1.13:

Figure 1.13: Add-on Sales figures sorted

Determine the middle value. Because there are 11 values, the middle value will 
be sixth in the list. We now take the sixth element in the ordered data and get a 
median of 2,300.

Note

When we compare the mean and the median, we see that there is a significant 
difference between the two. As previously mentioned, it is a sign that we have 
outliers in our dataset. We will discuss in future sections how to determine which 
values are outliers.
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Dispersion

Another property that is of interest in a dataset is discovering how close together data 
points are in a variable. For example, the number sets [100, 100, 100] and [50, 100, 150] 
both have a mean of 100, but the numbers in the second group are spread out more 
than the first. This property of describing how the data is spread is called dispersion.

There are many ways to measure the dispersion of a variable. Here are some of the most 
common ways to evaluate dispersion: 

•	 Range: The range is simply the difference between the highest and lowest values 
for a variable. It is incredibly easy to calculate but is very susceptible to outliers. It 
also does not provide much information about the spread of values in the middle 
of the dataset.

•	 Standard Deviation/Variance: Standard deviation is simply the square root of 
the average of the squared difference between each data point and the mean. 
The value of standard deviation ranges from 0 all the way to positive infinity. The 
closer the standard deviation is to 0, the less the numbers in the dataset vary. If 
the standard deviation is 0, this means that all the values for a dataset variable are 
the same.

One subtle distinction to note is that there are two different formulas for standard 
deviation, which are shown in Figure 1.14. When the dataset represents the entire 
population, you should calculate the population standard deviation using formula 
A in Figure 1.14. If your sample represents a portion of the observations, then you 
should use formula B for the sample standard deviation, as displayed in Figure 1.14. 
When in doubt, use the sample variance, as it is considered more conservative. 
Also, in practice, the difference between the two formulas is very small when there 
are many data points.

The standard deviation is generally the quantity used most often to describe 
dispersion. However, like range, it can also be affected by outliers, though not as 
extremely as the range is. It can also be fairly involved to calculate. Modern tools, 
however, usually make it very easy to calculate the standard deviation.

One final note is that, occasionally, you may see a related value, variance, listed as 
well. This quantity is simply the square of the standard deviation:

Figure 1.14: The standard deviation formulas for A) population and B) sample
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•	 Interquartile Range (IQR): The interquartile range is the difference between the 
first quartile, Q1 (this is also called the lower quartile), and the third quartile, Q3 
(this is also called the upper quartile). 

Note

For more information on calculating quantiles and quartiles, refer to the Data 
Distribution section in this chapter.

IQR, unlike range and standard deviation, is robust toward outliers, and so, while it is 
the most complicated of the functions to calculate, it provides a more robust way to 
measure the spread of datasets. In fact, IQR is often used to define outliers. If a value in 
a dataset is smaller than Q1 - 1.5 X IQR, or larger than Q3 + 1.5 X IQR, then the value is 
considered an outlier.

Exercise 4: Dispersion of Add-on Sales

To better understand the sales of additions and upgrades, you need to take a closer 
look at the dispersion of the data. In this exercise, we will calculate the range, standard 
deviation, IQR, and outliers of Add-on Sales. Here is the data for the 11 cars purchased: 
5,000, 1,700, 8,200, 1,500, 3,300, 9,000, 2,000, 0, 0, 2,300, and 4,700.

Follow these steps to perform the exercise:

1.	 To calculate the range, we find the minimum value of the data, 0, and subtract it 
from the maximum value of the data, 9,000, yielding 9,000.

2.	 The standard deviation calculation requires you to do the following: Determine 
whether we want to calculate the sample standard deviation or the population 
standard deviation. As these 11 data points only represent a small portion of all 
purchases, we will calculate the sample standard deviation.

3.	 Next, find the mean of the dataset, which we calculated in Exercise 2, Calculating 
the Quartiles for Add-on Sales, to be 3,427.27.

4.	 Now, subtract each data point from the mean and square the result. The results 
are summarized in the following diagram:
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Figure 1.15: The sum of the calculation of the square

5.	 Sum up the Differences with Mean Squared values, yielding 91,441,818.

6.	 Divide the sum by the number of data points minus 1, which, in this case, is 10, 
and take its square root. This calculation should result in 3,023.93 as the sample 
standard deviation.

7.	 To calculate the IQR, find the first and third quartiles. This calculation can be 
found in Exercise 2, Calculating the Quartiles for Add-on Sales, to give you 1,600 
and 4,850. Then, subtract the two to get the value 3,250.

Bivariate Analysis

So far, we have talked about methods for describing a single variable. Now, we will 
discuss how to find patterns with two variables using bivariate analysis

Scatterplots

A general principle you will find in analytics is that graphs are incredibly helpful in 
finding patterns. Just as histograms can help you to understand a single variable, 
scatterplots can help you to understand two variables. Scatterplots can be produced 
pretty easily using your favorite spreadsheet.

Note

Scatterplots are particularly helpful when there are only a small number of points, 
usually some number between 30 and 500. If you have a large number of points 
and plotting them appears to produce a giant blob in your scatterplot, take a 
random sample of 200 of those points and then plot them to help discern any 
interesting trends.
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A lot of different patterns are worth looking out for within a scatterplot. The most 
common pattern people look for is an upward or downward trend between the two 
variables; that is, as one variable increases, does the other variable decrease? Such a 
trend indicates that there may be a predictable mathematical relationship between the 
two variables. Figure 1.16 shows an example of a linear trend:

Figure 1.16: The upward linear trend of two variables, x and y

There are also many trends that are worth looking out for that are not linear, including 
quadratic, exponential, inverse, and logistic. The following diagram shows some of these 
trends and what they look like:
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Figure 1.17: Other common trends

Note

The process of approximating a trend with a mathematical function is known 
as regression analysis. Regression analysis plays a critical part in analytics but is 
outside the scope of this book. For more information on regression analysis, refer 
to an advanced text, such as Regression Modeling Strategies: With Applications to 
Linear Models, Logistic Regression, and Survival Analysis by Frank E. Harrell Jr.
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While trends are useful for understanding and predicting patterns, detecting changes 
in trends are often more important. Changes in trends usually indicate a critical change 
in whatever you are measuring and are worth examining further for an explanation. 
The following diagram shows an example of a change in a trend, where the linear trend 
wears off after x=40:

Figure 1.18: An example of a change in trend
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Another pattern people tend to look for is periodicity, that is, repeating patterns in the 
data. Such patterns can indicate that two variables may have cyclical behavior and can 
be useful in making predictions. The following diagram shows an example of periodic 
behavior:

Figure 1.19: An example of periodic behavior
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Another use of scatterplots is to help detect outliers. When most points in a graph 
appear to be in a specific region of the graph, but some points are quite far removed, 
this may indicate that those points are outliers with regard to the two variables. When 
performing further bivariate analysis, it may be wise to remove these points in order to 
reduce noise and produce better insights. The following diagram shows a case of points 
that may be considered outliers:

Figure 1.20: A scatterplot with two outliers

These techniques with scatterplots allow data professionals to understand the broader 
trends in their data and take the first steps to turn data into information.
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Pearson Correlation Coefficient

One of the most common trends in analyzing bivariate data is linear trends. Often times 
though, some linear trends are weak, while other linear trends are strong in how well a 
linear trend fits the data. In Figure 1.21 and Figure 1.22, we see examples of scatterplots 
with their line of best fit. This is a line calculated using a technique known as Ordinary 
Least Square (OLS) regression. Although OLS is beyond the scope of this book, 
understanding how well bivariate data fits a linear trend is an extraordinarily valuable 
tool for understanding the relationship between two variables:

Figure 1.21: A scatterplot with a strong linear trend
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The following diagram shows a scatterplot with a weak linear trend:

Figure 1.22: A scatterplot with a weak linear trend

Note

For more information on OLS regression, please refer to a statistics textbook, such 
as Statistics by David Freedman, Robert Pisani, and Roger Purves.

One method for quantifying linear correlation is to use what is called the Pearson 
correlation coefficient. The Pearson correlation coefficient, often represented by the 
letter r, is a number ranging from -1 to 1, indicating how well a scatterplot fits a linear 
trend. To calculate the Pearson correlation coefficient, r, we use the following formula:
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Figure 1.23: The formula for calculating the Pearson correlation coefficient

This formula is a bit heavy, so let's work through an example to turn the formula into 
specific steps.

Exercise 5: Calculating the Pearson Correlation Coefficient for Two Variables

Let's calculate the Pearson correlation coefficient for the relationship between Hours 
Worked Per Week and Sales Per Week ($). In the following diagram, we have listed 
some data for 10 salesmen at a ZoomZoom dealership in Houston, and how much they 
netted in sales that week:

Figure 1.24: Data for 10 salesmen at a ZoomZoom dealership

Perform the following steps to complete the exercise:
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1.	 First, create a scatterplot of the two variables in Excel by using the data given in 
the scenario. This will help us to get a rough estimate of what to expect for the 
Pearson correlation coefficient:

Figure 1.25: A scatterplot of Hours Worked Per Week and Sales Per Week

There does not appear to be a strong linear relationship, but there does appear to 
be a general increase in Sales Per Week ($) versus Hours Worked Per Week.

2.	 Now, calculate the mean of each variable. You should get 57.40 for Hours Worked 
Per Week and 1,861,987.3 for Sales Per Week. If you are not sure how to calculate 
the mean, refer to the Central Tendency section.

3.	 Now, for each row, calculate four values: the difference between each value and 
its mean, and the square of the difference between each value and its mean. Then, 
find the product of these differences. You should get a table of values, as shown in 
the following diagram:



Methods of Descriptive Statistics | 31

Figure 1.26: Calculations for the Pearson correlation coefficient

4.	 Find the sum of the squared terms and the sum of the product of the differences. 
You should get 2,812.40 for Hours Worked Per Week (x), 7,268,904,222,394.36 for 
Sales Per Week (y), and 54,492,841.32 for the product of the differences.

5.	 Take the square root of the sum of the differences to get 53.03 for Hours Worked 
Per Week (x) and 2,696,090.54 for Sales Per Week (y).

6.	 Input the values into the equation from Figure 1.27 to get 0.38. The following 
diagram shows the calculation:

Figure 1.27: The final calculation of the Pearson correlation coefficient

We learned how to calculate the Pearson correlation coefficient for two variables in this 
exercise and got the final output as 0.38 after using the formula.



32 | Understanding and Describing Data

Interpreting and Analyzing the Correlation Coefficient

Calculating the correlation coefficient by hand can be very complicated. It is generally 
preferable to calculate it on the computer. As you will learn in Chapter 3, SQL for Data 
Preparation, it is possible to calculate the Pearson correlation coefficient using SQL.

To interpret the Pearson correlation coefficient, compare its value to the table in 
Figure 1.28. The closer to 0 the coefficient is, the weaker the correlation. The higher the 
absolute value of a Pearson correlation coefficient, the more likely it is that the points 
will fit a straight line:

Figure 1.28: Interpreting a Pearson correlation coefficient

There are a couple of things to watch out for when examining the correlation 
coefficient. The first thing to watch out for is that the correlation coefficient measures 
how well two variables fit a linear trend. Two variables may share a strong trend but 
have a relatively low Pearson correlation coefficient. For example, look at the points in 
Figure 1.29. If you calculate the correlation coefficient for these two variables, you will 
find it is -0.08. However, the curve has a very clear quadratic relationship. Therefore, 
when you look at the correlation coefficients of bivariate data, be on the lookout for 
non-linear relationships that may describe the relationship between the two variables:



Methods of Descriptive Statistics | 33

Figure 1.29: A strong non-linear relationship with a low correlation coefficient

Another point of importance is the number of points used to calculate a correlation. 
It only takes two points to define a perfectly straight line. Therefore, you may be able 
to calculate a high correlation coefficient when there are fewer points. However, this 
correlation coefficient may not hold when more data is presented into the bivariate 
data. As a rule of thumb, correlation coefficients calculated with fewer than 30 data 
points should be taken with a pinch of salt. Ideally, you should have as many good data 
points as you can in order to calculate the correlation.
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Notice the use of the term "good data points." One of the recurring themes of this 
chapter has been the negative impact of outliers on various statistics. Indeed, with 
bivariate data, outliers can impact the correlation coefficient. Let's take a look at the 
graph in Figure 1.30. It has 11 points, one of which is an outlier. Due to that outlier, the 
Pearson correlation coefficient, r, for the data falls to 0.59, but without it, it equals 1.0. 
Therefore, care should be taken to remove outliers, especially from limited data:

Figure 1.30: Calculating r for a scatterplot with an outlier

Finally, one of the major problems associated with calculating correlation is the logical 
fallacy of correlation implying causation. That is, just because x and y have a strong 
correlation does not mean that x causes y. Let's take our example of the number of 
hours worked versus the number of sales netted per week. Imagine that, after adding 
more data points, it turns out that the correlation is 0.5 between these two variables. 
Many beginner data professionals and experienced executives would conclude that 
more working hours net more sales and start making their sales team work nonstop. 
While it is possible that working more hours causes more sales, a high correlation 
coefficient is not hard evidence for that. Another possibility may even be a reverse 
set of causation; it is possible that because you produce more sales, there is more 
paperwork and, therefore, you need to stay longer at the office in order to complete it. 
In this scenario, working more hours may not cause more sales. Another possibility is 
that there is a third item responsible for the association between the two variables. 
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For example, it may actually be that experienced salespeople work longer hours, and 
experienced salespeople also do a better job of selling. Therefore, the real cause is 
having employees with lots of sales experience, and the recommendation should be 
to hire more experienced sales professionals. As analytics professional, you will be 
responsible for avoiding pitfalls such as correlation and causation, and critically think 
about all the possibilities that might be responsible for the results you see.

Time Series Data

One of the most important types of bivariate analysis is a time series. A time series is 
simply a bivariate relationship where the x-axis is time. An example of a time series 
can be found in Figure 1.31, which shows a time series from January 2010 to late 2012. 
While, at first glance, this may not seem to be the case, date and time information is 
quantitative in nature. Understanding how things change over time is one of the most 
important types of analysis done in organizations and provides a lot of information 
about the context of the business. All of the patterns discussed in the previous section 
can also be found in time series data. Time series are also important in organizations 
because they can be indicative of when specific changes happened. Such time points 
can be useful in determining what caused these changes:

Figure 1.31: An example of a time series
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Activity 2: Exploring Dealership Sales Data

In this activity, we will explore a dataset in full. It's your first day at ZoomZoom, where 
the company is hard at work building the world's best electric vehicles and scooters 
in order to stop climate change. You have been recently hired as the newest senior 
data analyst for the company. You're incredibly excited to start your job and are ready 
to help however you can. Your manager, the head of analytics is happy to see you, 
but unfortunately, can't help you get set up today because of a company emergency 
(something about the CEO having a meltdown on a podcast). You don't have access to a 
database, but he did email you a CSV file with some data about national dealerships on 
it. He wants you to do some high-level analysis on annual sales at dealerships across the 
country:

1.	 Open the dealerships.csv document in a spreadsheet or text editor. This can be 
found in the Datasets folder of the GitHub repository.

2.	 Make a frequency distribution of the number of female employees at a dealership.

3.	 Determine the average and median annual sales for a dealership.

4.	 Determine the standard deviation of sales.

5.	 Do any of the dealerships seem like an outlier? Explain your reasoning.

6.	 Calculate the quantiles of the annual sales.

7.	 Calculate the correlation coefficient of annual sales to female employees and 
interpret the result.

Note

The solution for this activity can be found on page 314.

Working with Missing Data

In all of our examples so far, our datasets have been very clean. However, real-world 
datasets are almost never this nice. One of the many problems you may have to deal 
with when working with datasets is missing values. We will discuss the specifics of 
preparing data further in Chapter 3, SQL for Data Preparation. Nonetheless, in this 
section, we would like to take some time to discuss some of the strategies you can use 
to handle missing data. Some of your options include the following:
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•	 Deleting Rows: If a very small number of rows (that is, less than 5% of your 
dataset) are missing data, then the simplest solution may be to just delete the data 
points from your set. Such a result should not overly impact your results.

•	 Mean/Median/Mode Imputation: If 5% to 25% of your data for a variable is 
missing, another option is to take the mean, median, or mode of that column and 
fill in the blanks with that value. This may provide a small bias to your calculations, 
but it will allow you to complete more analysis without deleting valuable data.

•	 Regression Imputation: If possible, you may be able to build and use a model 
to impute missing values. This skill may be beyond the capability of most data 
analysts, but if you are working with a data scientist, this option could be viable.

•	 Deleting Variables: Ultimately, you cannot analyze data that does not exist. If you 
do not have a lot of data available, and a variable is missing most of its data, it may 
simply be better to remove that variable than to make too many assumptions and 
reach faulty conclusions.

You will also find that a decent portion of data analysis is more art than science. 
Working with missing data is one such area. With experience, you will find a 
combination of strategies that work well for different scenarios.

Statistical Significance Testing
Another piece of analysis that is useful in data analysis is statistical significance testing. 
Often times, an analyst is interested in comparing the statistical properties of two 
groups, or perhaps just one group before and after a change. Of course, the difference 
between these two groups may just be due to chance. 

An example of where this comes up is in marketing A/B tests. Companies will often test 
two different types of landing pages for a product and measure the click-through rate 
(CTR). You may find that the CTR for variation A of the landing page is 10%, and the CTR 
for variation B is 11%. So, does that mean that variation B is 10% better than A, or is this 
just a result of day-to-day variance? Statistical testing helps us to determine just that.



38 | Understanding and Describing Data

In statistical testing, there are a couple of major parts you need to have (Figure 1.32). 
First, we have the test statistic we are examining. It may be a proportion, an average, 
the difference between two groups, or a distribution. The next necessary part is a null 
hypothesis, which is the idea that the results observed are the product of chance. You 
will then need an alternative hypothesis, which is the idea that the results seen cannot 
be explained by chance alone. Finally, a test needs a significance level, which is the 
value the test statistic needs to take before it is decided that the null hypothesis cannot 
explain the difference. All statistical significance tests have these four aspects, and it is 
simply a matter of how these components are calculated that differentiate significance 
tests:

Figure 1.32: Parts of statistical significance testing
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Common Statistical Significance Tests

Some common statistical significance tests include the following:

•	 Two-sample Z-test: A test to determine whether the averages of the two samples 
are different. This test assumes that both samples are drawn from a normal 
distribution with a known population standard deviation.

•	 Two-sample T-test: A test to determine whether the average of two samples is 
different when either the sample set is too small (that is, fewer than 30 data points 
per sample), or if the population standard deviation is unknown. The two samples 
are also generally drawn from distributions assumed to be normal.

•	 Pearson's Chi-Squared Test: A test to determine whether the distribution of data 
points to categories is different than what would be expected due to chance. This 
is the primary test for determining whether the proportions in tests, such as those 
in an A/B test, are beyond what would be expected from chance.

Note

To learn more about statistical significance, please refer to a statistics textbook, 
such as Statistics by David Freedman, Robert Pisani, and Roger Purves.

Summary
Data is a powerful method by which to understand the world. The ultimate goal for 
analytics is to turn data into information and knowledge. To accomplish this goal, 
statistics can be used to better understand data, especially descriptive statistics, and 
statistical significance testing.

One branch of descriptive statistics, univariate analysis, can be utilized to understand a 
single variable of data. Univariate analysis can be used to find the distribution of data by 
utilizing frequency distributions and quantiles. We can also find the central tendency of 
a variable by calculating the mean, median, and mode of data. It can also be used to find 
the dispersion of data using the range, standard deviation, and IQR. Univariate analysis 
can also be used to find outliers. 
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Bivariate analysis can also be used to understand the relationship between data. Using 
scatterplots, we can determine trends, changes in trends, periodic behavior, and 
anomalous points in regard to two variables. We can also use the Pearson correlation 
coefficient to measure the strength of a linear trend between the two variables. The 
Pearson correlation coefficient, however, is subject to scrutiny due to outliers or the 
number of data points used to calculate the coefficient. Additionally, just because two 
variables have a strong correlation coefficient does not mean that one variable causes 
the other variable.

Statistical significance testing can also provide important information about data. 
Statistical significance testing allows us to determine how likely certain outcomes are 
to occur by chance and can help us to understand whether the changes seen between 
groups are of consequence.

Now that we have the basic analytical tools necessary to understand data, we will now 
review SQL and how we can use it to manipulate a database in the next chapter.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Describe the purpose of SQL

•	 Analyze how SQL can be used in an analytics workflow

•	 Apply the basics of a SQL database

•	 Perform operations to create, read, update, and delete a table

In this chapter, we will cover how SQL is used in data analytics. Then, we will learn the basics of 
SQL databases and perform CRUD (create, read, update, and delete) operations on a table.

The Basics of SQL for 
Analytics

2
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Introduction
In Chapter 1, Understanding and Describing Data, we discussed analytics and how we 
can use data to obtain valuable information. While we could, in theory, analyze all data 
by hand, computers are far better at the task and are certainly the preferred tool for 
storing, organizing, and processing data. Among the most critical of these data tools is 
the relational database and the language used to access it, Structured Query Language 
(SQL). These two technologies have been cornerstones of data processing and continue 
to be the data backbone of most companies that deal with substantial amounts of data. 

Companies use SQL as the primary method for storing much of their data. Furthermore, 
companies now take much of this data and put it into specialized databases called data 
warehouses and data lakes so that they can perform advanced analytics on their data. 
Virtually all of these data warehouses and data lakes are accessed using SQL. We'll be 
looking at working with SQL using analytics platforms such as data warehouses.

We assume that every person following this chapter has had some basic exposure to 
SQL. However, for those users who have very limited exposure to SQL, or who have 
not used it for some time, this chapter will provide a basic refresher of what relational 
databases and SQL are, along with a basic review of SQL operations and syntax. We will 
also go over a number of practice exercises to help reinforce these concepts.

Relational Databases and SQL
A relational database is a database that utilizes the relational model of data. The 
relational model, invented by Edgar F. Codd in 1970, organizes data as relations, or sets 
of tuples. Each tuple consists of a series of attributes, which generally describe the 
tuple. For example, we could imagine a customer relation, where each tuple represents 
a customer. Each tuple would then have attributes describing a single customer, giving 
information such as first name, last name, and age, perhaps in the format (John, Smith, 
27). One or more of the attributes is used to uniquely identify a tuple in a relation and 
is called the relational key. The relational model then allows logical operations to be 
performed between relations.

In a relational database, relations are usually implemented as tables, as in an Excel 
spreadsheet. Each row of the table is a tuple, and the attributes are represented as 
columns of the table. While not technically required, most tables in a relational database 
have a column referred to as the primary key, which uniquely identifies a row of the 
database. Every column also has a data type, which describes the data for the column. 



Relational Databases and SQL | 45

Tables are then usually assimilated in common collections in databases called schemas. 
These tables usually are loaded via processes known as Extract, Transform, and Load 
jobs (ETL).

Note

Tables are usually referred to in queries in the format [schema].[table]. For 
example, a product table in the analytics schema would be generally referred to as 
analytics.product. However, there is also a special schema called public. This 
is a default schema where, if you do not explicitly mention a schema, the database 
uses the public schema, for example, the public.products table and product 
table are similar.

The software used to manage relational databases on a computer is referred to as a 
relational database management system (RDBMS). SQL is the language utilized by 
users of an RDBMS to access and interact with a relational database.

Note 

Technically, virtually all relational databases that use SQL deviate from the 
relational model in some basic ways. For example, not every table has a specified 
relational key. Also, the relational model does not technically allow for duplicate 
rows, but you can have duplicate rows in a relational database. These differences 
are minor and will not matter for the vast majority of readers of this book. For 
more information on why most relational databases are not technically relational, 
refer to this article: https://www.periscopedata.com/blog/your-database-isnt-really-
relational.

Advantages and Disadvantages of SQL Databases

Since the release of Oracle Database in 1979, SQL has become an industry standard for 
data in nearly all computer applications – and for good reason. SQL databases provide a 
ton of advantages that make it the de facto choice for many applications:

•	 Intuitive: Relations represented as tables is a common data structure that almost 
everyone understands. As such, working with and reasoning about relational 
databases is much easier than doing so with other models.

https://www.periscopedata.com/blog/your-database-isnt-really-relational
https://www.periscopedata.com/blog/your-database-isnt-really-relational
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•	 Efficient: Using a technique known as normalization, relational databases allow 
the representation of data without unnecessarily repeating it. As such, relational 
databases can represent large amounts of information while utilizing less space. 
This reduced storage footprint also allows the database to reduce operation costs, 
making well-designed relational databases quick to process.

•	 Declarative: SQL is a declarative language, meaning that when you write code, you 
only need to tell the computer what data you want, and the RDBMS takes care of 
determining how to execute the SQL code. You never have to worry about telling 
the computer how to access and pull data in the table.

•	 Robust: Most popular SQL databases have a property known as atomicity, 
consistency, isolation, and durability (ACID) compliance, which guarantees the 
validity of the data, even if the hardware fails.

That said, there are still some downsides to SQL databases, which are as follows:

•	 Lower specificity: While SQL is declarative, its functionality can often be limited 
to what has already been programmed into it. Although most popular RDBMS 
software is updated constantly with new functionality being built all the time, 
it can be difficult to process and work with data structures and algorithms not 
programmed into an RDBMS.

•	 Limited scalability: SQL databases are incredibly robust, but this robustness 
comes at a cost. As the amount of information, you have doubles, the cost of 
resources more than doubles. When very large volumes of information are 
involved, other data stores, such as NoSQL databases, may actually be better.

•	 Object-relation mismatch impedance: While tables are a very intuitive data 
structure, they are not necessarily the best format for representing objects in 
a computer. This primarily occurs because objects often have attributes that 
have many-to-many relationships. For instance, a customer for a company may 
own multiple products, but each product may have multiple customers. For an 
object in a computer, we could easily represent this as a list attribute under the 
customer object. However, in a normalized database, a customer's products would 
potentially have to be represented using three different tables, each of which must 
be updated for every new purchase, recall, and return.
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Basic Data Types of SQL
As previously mentioned, each column in a table has a data type. We review the major 
data types here.

Numeric

Numeric data types are data types that represent numbers. The following diagram 
provides an overview of some of the major types:

Figure 2.1: Major numeric data types
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Character

Character data types store text information. The following diagram summarizes the 
character data types:

Figure 2.2: Major character data types

Under the hood, all of the character data types use the same underlying data structure 
in PostgreSQL and many other SQL databases, and most modern developers do not use 
char(n).

Boolean

Booleans are a data type used to represent True or False. The following table 
summarizes values that are represented as a Boolean when used in a query with a 
Boolean data column type:

Figure 2.3: Accepted Boolean values

While all of these values are accepted, the values True and False are considered 
compliant with best practice. Booleans columns can also have NULL values.
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Datetime

The datetime data type is used to store time-based information such as dates and 
times. The following are some of the datetime data types:

Figure 2.4: Major datetime data types

We will discuss this data type more in Chapter 7, Analytics Using Complex Data Types.

Data Structures: JSON and Arrays

Many versions of modern SQL also support data structures such as JavaScript Object 
Notation (JSON) and arrays. Arrays are simply listing of data usually written as members 
enclosed in square brackets. For example, ['cat', 'dog', 'horse'] is an array. A JSON object 
is a series of key-value pairs that are separated by commas and enclosed in curly 
braces. For example, {'name': 'Bob', 'age': 27, 'city': 'New York'} is a valid JSON object. 
These data structures show up consistently in technology applications and being able 
to use them in a database makes it easier to perform many kinds of analysis work.

We will discuss data structures more in Chapter 7, Analytics Using Complex Data Types.

We will now look at the basic operations in an RDBMS using SQL.
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Reading Tables: The SELECT Query
The most common operation in a database is reading data from a database. This is 
almost exclusively done through the use of the SELECT keyword.

Basic Anatomy and Working of a SELECT Query

Generally speaking, a query can be broken down into five parts:

•	 Operation: The first part of a query describes what is going to be done. In this 
case, this is the word SELECT, followed by the names of columns combined with 
functions.

•	 Data: The next part of the query is the data, which is the FROM keyword followed by 
one or more tables connected together with reserved keywords indicating what 
data should be scanned for filtering, selection, and calculation.

•	 Conditional: A part of the query that filters the data to only rows that meet a 
condition usually indicated with WHERE.

•	 Grouping: A special clause that takes the rows of a data source, assembles them 
together using a key created by a GROUP BY clause, and then calculates a value 
using the values from all rows with the same value. We will discuss this step more 
in Chapter 4, Aggregate Functions for Data Analysis.

•	 Post-processing: A part of the query that takes the results of the data and formats 
them by sorting and limiting the data, often using keywords such as ORDER BY and 
LIMIT.

The steps of a SELECT query are as follows:

1.	 Create a data source by taking one or more tables and combining them in one 
large table. 

2.	 Filter the table based on the large data source created in step 1 by seeing which 
rows meet the WHERE clause.

3.	 Calculate values based on columns in the data source in step 1. If there is a GROUP 
BY clause, divide the rows into groups and then calculate an aggregate statistic 
for each group. Otherwise, return a column or value calculated by performing 
functions on one or more columns together.

4.	 Take the rows returned and reorganize them based on the query.
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To break down these steps, let's look at a typical query and follow the logic we've 
described:

SELECT first_name
FROM customers
WHERE state='AZ'
ORDER BY first_name 

The operation of this query follows a sequence:

1.	 We start with the customers table.

2.	 The customers table is filtered to where the state column equals 'AZ'.

3.	 We capture the first_name column from the filtered table.

4.	 The first_name column is then ordered in alphabetical order.

Here, we've shown how a query can be broken down into a series of steps for the 
database to process.

We will now look at the query keywords and patterns found in a SELECT query.

Basic Keywords in a SELECT Query

SELECT and FROM

The most basic SELECT query follows the pattern SELECT…FROM <table_name>;. This query 
is the way to pull data from a single table. For example, if you want to pull all the data 
from the products table in our sample database, simply use this query:

SELECT *

FROM products;

This query will pull all data from a database. The * symbol seen here is shorthand 
to return all columns from a database. The semicolon operator (;) is used to tell the 
computer it has reached the end of the query, much like a period is used for a normal 
sentence. It's important to note that the rows will be returned in no specific order. If we 
want to return only specific columns from a query, we can simply replace the asterisk 
with the names of the columns we want to be separated in the order we want them to 
be returned in. For example, if we wanted to return the product_id column followed by 
the model column of the products table, we would write the following query:

SELECT product_id, model

FROM products;
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If we wanted to return the model column first and the product_id column second, we 
would write this:

SELECT model, product_id

FROM products;

WHERE

The WHERE clause is a piece of conditional logic that limits the amount of data returned. 
All the rows returned in a SELECT statement with a WHERE clause in it meet the conditions 
of the WHERE clause. The WHERE clause can usually be found after the FROM clause of a 
single SELECT statement.

The condition in the WHERE clause is generally a Boolean statement that can either be 
True or False for every row. In the case of numeric columns, these Boolean statements 
can use equals, greater than, or less than operators to compare the columns against a 
value.

We will use an example to illustrate. Let's say we wanted to see the model names of 
our products with the model year of 2014 from our sample dataset. We would write the 
following query:

SELECT model

FROM products

WHERE year=2014;

AND/OR

The previous query had only one condition. We are often interested in multiple 
conditions being met at once. For this, we put multiple statements together using the 
AND or OR clause. 

Now, we will illustrate this with an example. Let's say we wanted to return models 
that not only were built in 2014, but also have a manufacturer's suggested retail price 
(MSRP) of less than $1,000. We can write:

SELECT model

FROM products

WHERE year=2014

AND msrp<=1000;
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Now, let's say we wanted to return models that were released in the year 2014 or had a 
product type of automobile. We would then write the following query:

SELECT model

FROM products

WHERE year=2014

OR product_type='automobile';

When using more than one AND/OR condition, use parentheses to separate and position 
pieces of logic together. This will make sure that your query works as expected and that 
it is as readable as possible. For example, if we wanted to get all products with models 
in the years between 2014 and 2016, as well as any products that are scooters, we could 
write:

SELECT *

FROM products

WHERE year>2014

AND year<2016

OR product_type='scooter';

However, to clarify the WHERE clause, it would be preferable to write:

SELECT *

FROM products

WHERE (year>2014 AND year<2016)

OR product_type='scooter';

IN/NOT IN

As mentioned earlier, Boolean statements can use equals signs to indicate that a column 
must equal a certain value. However, what if you are interested in returning rows where 
a row has a column that can be equal to any of a group of values? For instance, let's say 
you were interested in returning all models with the year 2014, 2016, or 2019. You could 
write a query such as this:

SELECT model

FROM products

WHERE year = 2014

OR year = 2016

OR year = 2019;
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However, this is long and tedious to write. Using IN, you can instead write:

SELECT model

FROM products

WHERE year IN (2014, 2016, 2019);

This is much cleaner to write and makes it easier to understand what is going on. 

Conversely, you can also use the NOT IN clause to return all values that are not in a list 
of values. For instance, if you wanted all products that were not produced in the years 
2014, 2016, and 2019, you could write:

SELECT model

FROM products

WHERE year NOT IN (2014, 2016, 2019);

ORDER BY

As previously mentioned, SQL queries will order rows as the database finds them if 
more specific instructions to do otherwise are not given. For many use cases, this is 
acceptable. However, you will often want to see rows in a specific order. Let's say you 
want to see all of the products listed by the date when they were first produced, from 
earliest to latest. The method for doing this in SQL would be as follows:

SELECT model

FROM products

ORDER BY production_start_date;

If an order sequence is not explicitly mentioned, the rows will be returned in ascending 
order. Ascending order simply means the rows will be ordered from the smallest value 
to the highest value of the chosen column or columns. In the case of things such as text, 
this means alphabetical order. You can make the ascending order explicit by using the 
ASC keyword. For our last query, this would be achieved by writing:

SELECT model

FROM products

ORDER BY production_start_date ASC;

If you would like to extract data in greatest-to-least order, you can use the DESC 
keyword. If we wanted to fetch manufactured models ordered from newest to oldest, 
we would write:

SELECT model

FROM products

ORDER BY production_start_date DESC;
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Also, instead of writing the name of the column you want to order by, you can instead 
refer to what number column it is in the natural order of the table. For instance, say you 
wanted to return all the models in the products table ordered by product ID. You could 
write:

SELECT model

FROM products

ORDER BY product_id;

However, because product_id is the first column in the table, you could instead write:

SELECT model

FROM products

ORDER BY 1;

Finally, you can order by multiple columns by adding additional columns after ORDER BY 
separated with commas. For instance, let's say we wanted to order all of the rows in the 
table first by the year of the model, from newest to oldest, and then by the MSRP from 
least to greatest. We would then write:

SELECT *

FROM products

ORDER BY year DESC, base_msrp ASC;

The following is the output of the preceding code:

Figure 2.5: Ordering multiple columns using ORDER BY
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LIMIT

Most tables in SQL databases tend to be quite large, and therefore returning every 
single row is unnecessary. Sometimes, you may want only the first few rows. For this 
scenario, the LIMIT keyword comes in handy. Let's imagine that you wanted to only get 
the first five products that were produced by the company. You could get this by using 
the following query:

SELECT model

FROM products

ORDER BY production_start_date

LIMIT 5;

As a general rule, you probably want to use a LIMIT keyword for a table or query you 
have not worked with.

IS NULL/IS NOT NULL

Often, some entries in a given column may be missing. This could be for a variety of 
reasons. Perhaps the data was not collected or not available at the time that the data 
was collected. Perhaps the ETL job failed to collect and load data into a column. It may 
also be possible that the absence of a value is representative of a certain state in the 
row and actually provides valuable information. Whatever the reason, we are often 
interested in finding rows where the data is not filled in for a certain value. In SQL, 
blank values are often represented by the NULL value. For instance, in the products table, 
the production_end_date column having a NULL value indicates that the product is still 
being made. In this case, if we want to list all products that are still being made, we can 
use the following query:

SELECT *

FROM products

WHERE production_end_date IS NULL

If we are only interested in products that are not being produced, we can use the IS NOT 
NULL clause, as in the following query:

SELECT *

FROM products

WHERE production_end_date IS NOT NULL
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Exercise 6: Querying the Salespeople Table Using Basic Keywords in a SELECT 

Query

In this exercise, we will create various queries using basic keywords in a SELECT query. 
Let's say that, after a few days at your new job, you finally get access to the company 
database. Today, your boss has asked you to help a sales manager who does not know 
SQL particularly well. The sales manager would like a couple of different lists of 
salespeople. First, create a list of the online usernames of the first 10 female salespeople 
hired, ordered from the first hired to the latest hired.

Note

For all exercises in this book, we will be using pgAdmin 4. Codes for all the 
exercises and activities can also be found on GitHub: https://github.com/
TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson02.

Perform the following steps to complete the exercise:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Examine the schema for the salespeople table from the schema dropdown. Notice 
the names of the columns in the following diagram:

Figure 2.6: Schema of the salespeople table

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson02
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson02
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3.	 Execute the following query to get the usernames of female salespeople sorted by 
their hire_date values and set LIMIT as 10:

SELECT username
FROM salespeople
WHERE gender= 'Female'
ORDER BY hire_date
LIMIT 10

The following is the output of the preceding code:

Figure 2.7: Usernames of female salespeople sorted by hire date

We now have a list of usernames for female salespeople ordered from the earliest 
hire to the most recent hire.

In this exercise, we used different basic keywords in a SELECT query to help the sales 
manager to get the list of salespeople as per their requirements.
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Activity 3: Querying the customers Table Using Basic Keywords in a SELECT 

Query

One day, your manager at ZoomZoom calls you in and tells you that the marketing 
department has decided that they want to do a series of marketing campaigns to help 
promote a sale. You will need to send queries to the manager to pull the data. The 
following are the steps to complete the activity:

1.	 Open your favorite SQL client and connect to the sqlda database. Examine the 
schema for the customers table from the schema dropdown.

2.	 Write a query that pulls all emails for ZoomZoom customers in the state of Florida 
in alphabetical order.

3.	 Write a query that pulls all the first names, last names and email details for 
ZoomZoom customers in New York City in the state of New York. They should be 
ordered alphabetically by the last name followed by the first name.

4.	 Write a query that returns all customers with a phone number ordered by the date 
the customer was added to the database.

Expected Output:

Figure 2.8: Customers with a phone number ordered by the date  
the customer was added to the database

Note

The solution for the activity can be found on page 317.

In this activity, we used various basic keywords in a SELECT query and helped the 
marketing manager to get the data they needed.
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Creating Tables
Now that we know how to read data from tables, we will now look at how to create 
new tables. There are fundamentally two ways to create tables: creating blank tables or 
using SELECT queries. 

Creating Blank Tables

To create a new blank table, we use the CREATE TABLE statement. This statement takes 
the following structure:

CREATE TABLE {table_name} (

{column_name_1} {data_type_1} {column_constraint_1},

{column_name_2} {data_type_2} {column_constraint_2},

{column_name_3} {data_type_3} {column_constraint_3},

…

{column_name_last} {data_type_last} {column_constraint_last},

);

Here {table_name} is the name of the table, {column_name} is the name of the column, 
{data_type} is the data type of the column, and {column_constraint} is one or more 
optional keywords giving special properties to the column. Before we discuss how to 
use the CREATE TABLE query, we will first discuss column constraints.

Column Constraints

Column constraints are keywords that give special properties to a column. Some major 
column constraints are:

•	 NOT NULL: This constraint guarantees that no value in a column can be null.

•	 UNIQUE: This constraint guarantees that every single row for a column has a unique 
value and that no value is repeated.

•	 PRIMARY KEY: This is a special constraint that is unique for each row and helps to 
find the row quicker. Only one column in a table can be a primary key.



Creating Tables | 61

Suppose we want to create a table called state_populations, and it has columns with 
states' initials and populations. The query would look like this:

CREATE TABLE state_populations (^state VARCHAR(2) PRIMARY KEY,

population NUMERIC

);

Note

Sometimes, you may run a CREATE TABLE query and get the error "relation 
{table_name} already exists". This simply means that a table with the same name 
already exists. You will either have to delete the table with the same name or 
change the name of your table.

We will now discuss the next way to create a table, which is by using a SQL query.

Exercise 7: Creating a Table in SQL

In this exercise, we will create a table using the CREATE TABLE statement. The marketing 
team at ZoomZoom would like to create a table called countries to analyze the data of 
different countries. It should have four columns: an integer key column, a unique name 
column, a founding year column, and a capital column.

Perform the following steps to complete the exercise:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Run the following query to create the countries table:

CREATE TABLE countries (
key INT PRIMARY KEY,
name text UNIQUE,
founding_year INT,
capital text
);

You should get a blank table as follows:

Figure 2.9: Blank countries' table with column names
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In this exercise, we learned how to create a table using different column constraints 
and the CREATE TABLE statement.

Creating Tables with SELECT

We know how to create a table. However, say you wanted to create a table using data 
from an existing table. This can be done using a modification of the CREATE TABLE 
statement:

CREATE TABLE {table_name} AS (

{select_query}

);

Here, {select_query} is any SELECT query that can be run in your database. For instance, 
say you wanted to create a table based on the products table that only had products 
from the year 2014. Let's call this table products_2014. You could then write the 
following query:

CREATE TABLE products_2014 AS (

SELECT *

FROM products

WHERE year=2014

);

This can be done with any SELECT query, and the table will inherit all the properties of 
the output query.

Updating Tables
Over time, you may also need to modify a table by adding columns, adding new data, or 
updating existing rows. We will discuss how to do that in this section.

Adding and Removing Columns

To add new columns to an existing table, we use the ADD COLUMN statement as in the 
following query:

ALTER TABLE {table_name}

ADD COLUMN {column_name} {data_type};
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Let's say, for example, that we wanted to add a new column to the products table that 
we will use to store the products' weight in kilograms called weight. We could do this by 
using the following query:

ALTER TABLE products

ADD COLUMN weight INT;

This query will make a new column called weight in the products table and will give it 
the integer data type so that only numbers can be stored within it.

If you want to remove a column from a table, you can use the DROP column statement:

ALTER TABLE {table_name}

DROP COLUMN {column_name};

Here, {table_name} is the name of the table you want to change, and {column_name} is 
the name of the column you want to drop.

Let's imagine that you decide to delete the weight column you just created. You could 
get rid of it using the following query:

ALTER TABLE products

DROP COLUMN weight;

Adding New Data

You can add new data in a table using several methods in SQL.

One method is to simply insert values straight into a table using the INSERT INTO…VALUES 
statement. It has the following structure:

INSERT INTO {table_name} ({column_1], {column_2}, …{column_last})

VALUES ({column_value_1}, {column_value_2}, … {column_value_last});

Here, {table_name} is the name of the table you want to insert your data into, 
{column_1}, {column_2}, … {column_last} is a list of the columns whose values you 
want to insert, and {column_value_1}, {column_value_2}, … {column_value_last} is the 
values of the rows you want to insert into the table. If a column in the table is not put 
into the INSERT statement, the column is assumed to have a NULL value.

As an example, let's say you wanted to insert a new scooter into the products table. This 
could be done with the following query:

INSERT INTO products (product_id, model, year, product_type, base_msrp, 
production_start_date, production_end_date)

VALUES (13, "Nimbus 5000", 2019, 'scooter', 500.00, '2019-03-03', '2020-03-
03');
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Another way to insert data into a table is to use the INSERT statement with a SELECT 
query using the following syntax:

INSERT INTO {table_name} ({column_1], {column_2}, …{column_last})

{select_query};

Here, {table_name} is the name of the table into which you want to insert the data, 
{column_1}, {column_2}, … {column_last} is a list of the columns whose values you 
want to insert, and {select query} is a query with the same structure as the values you 
want to insert into the table.

Take the example of the products_2014 table we discussed earlier. Imagine that instead 
of creating it with a SELECT query, we created it as a blank table with the same structure 
as the products table. If we wanted to insert the same data as we did earlier, we could 
use the following query:

INSERT INTO products (product_id, model, year, product_type, base_msrp, 
production_start_date, production_end_date) 

SELECT *

FROM products

WHERE year=2014;

Updating Existing Rows

Sometimes, you may need to update the values of the data present in a table. To do this, 
you can use the UPDATE statement:

UPDATE {table_name}

SET {column_1} = {column_value_1},

    {column_2} = {column_value_2},

    ...

    {column_last} = {{column_value_last}}

WHERE

 {conditional};

Here, {table_name} is the name of the table with data that will be changed, {column_1}, 
{column_2},… {column_last} is the columns whose values you want to change, {column_
value_1}, {column_value_2},… {column_value_last} is the new values you want to insert 
into those columns, and {WHERE} is a conditional statement like one you would find in a 
SQL query.
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To illustrate its use of the update statement, let's say that for the rest of the year, the 
company has decided to sell all scooter models before 2018 for $299.99. We could 
change the data in the products table using the following query:

UPDATE products

SET base_msrp = 299.99,

WHERE

product_type = 'scooter'

AND year<2018;

Exercise 8: Updating Tables in SQL

Our goal in this exercise is to update the data in a table using the UPDATE statement. Due 
to the higher cost of rare metals needed to manufacture an electric vehicle, the new 
2019 Model Chi will need to undergo a price hike of 10%. Update the products table to 
increase the price of this product.

Perform the following steps to complete the exercise:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Run the following query to update the price of Model Chi in the products table:

UPDATE products
SET base_msrp = base_msrp*1.10
WHERE model='Model Chi'
and year=2019;

3.	 Now, write the SELECT query to check whether the price of Model Chi in 2019 has 
been updated:

SELECT * 
FROM products
WHERE model='Model Chi'
AND year=2019;

The following is the output of the preceding code:

Figure 2.10: The updated price of Model Chi in 2019

As seen in the output, the price of Model Chi is now 104,500, which was previously 
$95,000.
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In this exercise, we learned how to update a table using the UPDATE statement.

We will now discuss how to delete tables and data from tables.

Deleting Data and Tables
We often discover that data in a table is incorrect, and therefore can no longer be used. 
At such times, we need to delete data from a table.

Deleting Values from a Row

Often, we will be interested in deleting a value in a row. The easiest way to accomplish 
this task is to use the UPDATE structure we already discussed and to set the column value 
to NULL like so:

UPDATE {table_name}

SET {column_1} = NULL,

    {column_2} = NULL,

    ...

    {column_last} = NULL

WHERE

 {conditional};

Here, {table_name} is the name of the table with the data that needs to be changed, 
{column_1}, {column_2},… {column_last} is the columns whose values you want to 
delete, and {WHERE} is a conditional statement like one you would find in a SQL query.

Let's say, for instance, that we have the wrong email on file for the customer with the 
customer ID equal to 3. To fix that, we can use the following query:

UPDATE customers

SET email = NULL

WHERE customer_id=3;

Deleting Rows from a Table

Deleting a row from a table can be done using the DELETE statement, which looks like 
this:

DELETE FROM {table_name}

WHERE {conditional};

DELETE FROM customers

WHERE email='bjordan2@geocities.com';
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If we wanted to delete all the data in the customers table without deleting the table, we 
could write the following query:

DELETE FROM customers;

Alternatively, if you want to delete all the data in a query without deleting the table, you 
could use the TRUNCATE keyword as follows:

TRUNCATE TABLE customers;

Deleting Tables

To delete the table along with the data completely, you can just use the DROP TABLE 
statement with the following syntax:

DROP TABLE {table_name};

Here, {table_name} is the name of the table you want to delete. If we wanted to delete 
all the data in the customers table along with the table itself, we would write:

DROP TABLE customers;

Exercise 9: Unnecessary Reference Table

The marketing team has finished analyzing the potential number of customers they 
have in every state, and no longer need the state_populations table. To save space on 
the database, delete the table.

Perform the following steps to complete the exercise:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Run the following query to drop the state_populations table:

DROP TABLE state_populations;

The state_populations table should now be deleted from the database.

3.	 Since the table has just been dropped, a SELECT query on this table throws an error, 
as expected:

SELECT * FROM state_populations;

You will find the error shown in the following diagram: 

Figure 2.11: Error shown as the state_populations table was dropped
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In this exercise, we learned how to delete a table using the DROP TABLE statement.

Activity 4: Marketing Operations

You did a great job pulling data for the marketing team. However, the marketing 
manager, who you so graciously helped, realized that they had made a mistake. It 
turns out that instead of just the query, the manager needs to create a new table in the 
company's analytics database. Furthermore, they need to make some changes to the 
data that is present in the customers table. It is your job to help the marketing manager 
with the table:

1.	 Create a new table called customers_nyc that pulls all rows from the customers 
table where the customer lives in New York City in the state of New York. 

2.	 Delete from the new table all customers in postal code 10014. Due to local laws, 
they will not be eligible for marketing.

3.	 Add a new text column called event.

4.	 Set the value of the event to thank-you party.

Expected Output:

Figure 2.12: The customers_nyc table with event set as 'thank-you party'

5.	 You've told the manager that you've completed these steps. He tells the marketing 
operations team, who then uses the data to launch a marketing campaign. The 
marketing manager thanks you and then asks you to delete the customers_nyc 
table.

Note

The solution for the activity can be found on page 319.

In this activity, we used different CRUD operations to modify a table as requested by the 
marketing manager. We will now come full circle to talk about how SQL and analytics 
connect.
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SQL and Analytics
In this chapter, we went through the basics of SQL, tables, and queries. You may be 
wondering, then, what SQL has to do with analytics. You may have seen some parallels 
between the first two chapters. When we talk about a SQL table, it should be clear that 
it can be thought of as a dataset. Rows can be considered individual units of observation 
and columns can be considered features. If we view SQL tables in this way, we can see 
that SQL is a natural way to store datasets in a computer.

However, SQL can go further than just providing a convenient way to store datasets. 
Modern SQL implementations also provide tools for processing and analyzing data 
through various functions. Using SQL, we can clean data, transform data to more 
useful formats, and analyze data with statistics to find interesting patterns. The rest of 
this book will be dedicated to understanding how SQL can be used for these purposes 
productively and efficiently.

Summary
Relational databases are a mature and ubiquitous technology that is used to store and 
query data. Relational databases store data in the form of relations, also known as 
tables, which allow for an excellent combination of performance, efficiency, and ease 
of use. SQL is the language used to access relational databases. SQL is a declarative 
language that allows users to focus on what to create, as opposed to how to create it. 
SQL supports many different data types, including numeric data, text data, and even 
data structures.

When querying data, SQL allows a user to pick which fields to pull, as well as how to 
filter the data. This data can also be ordered, and SQL allows for as much or as little 
data as we need to be pulled. Creating, updating, and deleting data is also fairly simple 
and can be quite surgical.

Now that we have reviewed the basics of SQL, we will discuss how SQL can be used to 
perform the first step in data analytics, cleaning, and the transformation of data, in the 
next chapter.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Assemble multiple tables and queries together into a dataset

•	 Transform and clean data using SQL functions

•	 Remove duplicate data using DISTINCT and DISTINCT ON

In this chapter, we will learn to clean and prepare our data for analysis using SQL techniques.

SQL for Data 
Preparation

3
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Introduction
In the previous chapter, we discussed the basics of SQL and how to work with individual 
tables in SQL. We also used CRUD (create, read, update and delete) operations on a 
table. These tables are the foundation for all the work undertaken in analytics. One of 
the first tasks implemented in analytics is to create clean datasets. According to Forbes, 
it is estimated that, almost 80% of the time spent by analytics professionals involves 
preparing data for use in analysis and building models with unclean data which harms 
analysis by leading to poor conclusions. SQL can help in this tedious but important task, 
by providing ways to build datasets which are clean, in an efficient manner. We will start 
by discussing how to assemble data using JOINs and UNIONs. Then, we will use different 
functions, such as CASE WHEN, COALESCE, NULLIF, and LEAST/GREATEST, to clean data. We 
will then discuss how to transform and remove duplicate data from queries using the 
DISTINCT command.

Assembling Data

Connecting Tables Using JOIN

In Chapter 2, The Basics of SQL for Analytics, we discussed how we can query data 
from a table. However, the majority of the time, the data you are interested in is spread 
across multiple tables. Fortunately, SQL has methods for bringing related tables 
together using the JOIN keyword.

To illustrate, let's look at two tables in our database – dealerships and salespeople. 
In the salespeople table, we observe that we have a column called dealership_id. 
This dealership_id column is a direct reference to the dealership_id column in the 
dealerships table. When table A has a column that references the primary key of table B, 
the column is said to be a foreign key to table A. In this case, the dealership_id column 
in salespeople is a foreign key to the dealerships table.

Note

Foreign keys can also be added as a column constraint to a table in order to 
improve the integrity of the data by making sure that the foreign key never 
contains a value that cannot be found in the referenced table. This data property 
is known as referential integrity. Adding foreign key constraints can also help 
to improve performance in some databases. Foreign key constraints are beyond 
the scope of this book and, in most instances, your company's data engineers and 
database administrators will deal with these details. You can learn more about 
foreign key constraints in the PostgreSQL documentation at the following link: 
https://www.postgresql.org/docs/9.4/tutorial-fk.html.

https://www.postgresql.org/docs/9.4/tutorial-fk.html
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As these tables are related, you can perform some interesting analyses with these two 
tables. For instance, you may be interested in determining which salespeople work at a 
dealership in California. One way of retrieving this information is to first query which 
dealerships are located in California using the following query:

SELECT *

FROM dealerships

WHERE state='CA';

This query should give you the following results:

Figure 3.1: Dealerships in California

Now that you know that the only two dealerships in California have IDs of 2 and 5, 
respectively, you can then query the salespeople table as follows:

SELECT * 

FROM salespeople 

WHERE dealership_id in (2, 5)

ORDER BY 1;

The results will be similar to the following:

Figure 3.2: Salespeople in California

While this method gives you the results you want, it is tedious to perform two queries 
to get these results. What would make this query easier would be to somehow add 
the information from the dealerships table to the salespeople table and then filter for 
users in California. SQL provides such a tool with the JOIN clause. The JOIN clause is 
a SQL clause that allows a user to join one or more tables together based on distinct 
conditions.
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Types of Joins

In this chapter, we will discuss three fundamental joins, which are illustrated in Figure 
3.3: inner joins, outer joins, and cross joins:

Figure 3.3: Major types of joins

INNER JOIN

The inner join connects rows in different tables together based on a condition known 
as the join predicate. In many cases, the join predicate is a logical condition of equality. 
Each row in the first table is compared against every other row in the second table. For 
row combinations that meet the inner join predicate, that row is returned in the query. 
Otherwise, the row combination is discarded.

Inner joins are usually written in the following form:

SELECT {columns}

FROM {table1}

INNER JOIN {table2} ON {table1}.{common_key_1}={table2}.{common_key_2}

Here, {columns} are the columns you want to get from the joined table, {table1} is the 
first table, {table2} is the second table, {common_key_1} is the column in {table1} you 
want to join on, and {common_key_2} is the column in {table2} to join on.



Assembling Data | 75

Now, let's go back to the two tables we discussed – dealerships and salespeople. As 
mentioned earlier, it would be good if we could append the information from the 
dealerships table to the salespeople table in order to know which state each dealer 
works in. For the time being, let's assume that all the salespeople IDs have a valid 
dealership_id.

Note

At this point in the book, you do not have the necessary skills to verify that every 
dealership ID is valid in the salespeople table, and so we assume it. However, in 
real-world scenarios, it will be important for you to validate these things on your 
own. Generally speaking, there are very few datasets and systems that guarantee 
clean data.

We can join the two tables using an equal's condition in the join predicate, as follows:

SELECT *

FROM salespeople

INNER JOIN dealerships

    ON salespeople.dealership_id = dealerships.dealership_id 

ORDER BY 1;

This query will produce the following output:

Figure 3.4: Salespeople table joined to the dealerships table

As you can see in the preceding output, the table is the result of joining the salespeople 
table to the dealerships table (note also that the first table listed in the query, 
salespeople, is on the left-hand side of the result, while the dealerships table is on the 
right-hand side. This is important to understand for the next section). More specifically, 
dealership_id in the salespeople table matches the dealership_id, in the dealerships 
table. This shows how the join predicate is met. By running this join query, we have 
effectively created a new "super dataset" consisting of the two tables merged together 
where the two dealership_id columns are equal. 
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We can now query this "super-dataset" the same way we would query one large table 
using the clauses and keywords from Chapter 1, Understanding and Describing Data. For 
example, going back to our multi-query issue to determine which sales query works in 
California, we can now address it with one easy query:

SELECT *

FROM salespeople

INNER JOIN dealerships

    ON salespeople.dealership_id = dealerships.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1

This gives us the following output: 

Figure 3.5: Salespeople in California with one query

Careful readers will observe that the output in Figure 3.2 and Figure 3.5 are nearly 
identical, with the exception being that the table in Figure 3.5 has dealerships' data 
appended as well. If we want to isolate just the salespeople table portion of this, we can 
select the salespeople columns using the following star syntax:

SELECT salespeople.*

FROM salespeople

INNER JOIN dealerships

    ON dealerships.dealership_id = salespeople.dealership_id

WHERE dealerships.state = 'CA'

ORDER BY 1;
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There is one other shortcut that can help when writing statements with several join 
clauses: you can alias table names so that you do not have to type out the entire name 
of the table every time. Simply write the name of the alias after the first mention of the 
table after the join clause, and you can save a decent amount of typing. For instance, for 
the last preceding query, if we wanted to alias salespeople with s and dealerships with d, 
you could write the following statement:

SELECT s.*

FROM salespeople s

INNER JOIN dealerships d

    ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;

Alternatively, you can also put the AS keyword between the table name and alias to make 
the alias more explicit:

SELECT s.*

FROM salespeople AS s

INNER JOIN dealerships AS d

    ON d.dealership_id = s.dealership_id

WHERE d.state = 'CA'

ORDER BY 1;

Now that we have cleared up the basics of inner joins, we will discuss outer joins.

OUTER JOIN

As discussed, inner joins will only return rows from the two tables, and only if the join 
predicate is met for both rows. Otherwise, no rows from either table are returned. 
Sometimes, however, we want to return all rows from one of the tables regardless of 
whether the join predicate is met. In this case, the join predicate is not met; the row for 
the second table will be returned as NULL. These joins, where at least one table will be 
represented in every row after the join operation, are known as outer joins.

Outer joins can be classified into three categories: left outer joins, right outer joins, and 
full outer joins.
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Left outer joins are where the left table (that is, the table mentioned first in a join 
clause) will have every row returned. If a row from the other table is not found, a row of 
NULL is returned. Left outer joins are performed by using the LEFT OUTER JOIN keywords 
followed by a join predicate. This can also be written in short as LEFT JOIN. To show 
how left outer joins work, let's examine two tables: the customers tables and the emails 
table. For the time being, assume that not every customer has been sent an email, and 
we want to mail all customers who have not received an email. We can use outer joins 
to make that happen. Let's do a left outer join between the customer table on the left 
and the emails table on the right. To help manage output, we will only limit it to the first 
1,000 rows. The following code snippet is utilized:

SELECT *

FROM customers c

LEFT OUTER JOIN emails e ON e.customer_id=c.customer_id

ORDER BY c.customer_id

LIMIT 1000;

Following is the output of the preceding code:

Figure 3.6: Customers left-joined to emails

When you look at the output of the query, you should see that entries from the 
customer table are present. However, for some of the rows, such as for customer 
row 27 which can be seen in Figure 3.7, the columns belonging to the emails table are 
completely full of nulls. This arrangement explains how the outer join is different from 
the inner join. If the inner join was used, the customer_id column would not be blank. 
This query, however, is still useful because we can now use it to find people who have 
never received an email. Because those customers who were never sent an email have 
a null customer_id column in the emails table, we can find all of these customers by 
checking the customer_id column in the emails table as follows:

SELECT *

FROM customers c

LEFT OUTER JOIN emails e ON c.customer_id = e.customer_id 

WHERE e.customer_id IS NULL
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ORDER BY c.customer_id

LIMIT 1000

We then get the following output:

Figure 3.7: Customers with no emails sent

As you can see, all entries are blank in the customer_id column, indicating that they 
have not received any emails. We could simply grab the emails from this join to get all 
customers who have not received an email.

A right outer join is very similar to a left join, except the table on the "right" (the second 
listed table) will now have every row show up, and the "left" table will have NULLs if the 
join condition is not met. To illustrate, let's "flip" the last query by right-joining the 
emails table to the customers table with the following query:

SELECT *

FROM emails e

RIGHT OUTER JOIN customers c ON e.customer_id=c.customer_id

ORDER BY c.customer_id

LIMIT 1000;

When you run this query, you will get something similar to the following result:

Figure 3.8: Emails right-joined to customers table
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Notice that this output is similar to what was produced in Figure 3.7, except that the 
data from the emails table is now on the left-hand side, and the data from the customers 
table is on the right-hand side. Once again, customer_id 27 has NULL for the email. This 
shows the symmetry between a right join and a left join.

Finally, there is the full outer join. The full outer join will return all rows from the left 
and right tables, regardless of whether the join predicate is matched. For rows where 
the join predicate is met, the two rows are combined in a group. For rows where they 
are not met, the row has NULL filled in. The full outer join is invoked by using the FULL 
OUTER JOIN clause, followed by a join predicate. Here is the syntax of this join:

SELECT * 

FROM email e

FULL OUTER JOIN customers c

ON e.customer_id=c.customer_id;

In this section, we learned how to implement three different outer joins. In the next 
section, we will work with the cross join.

CROSS JOIN

The final type of join we will discuss in this book is the cross join. The cross join is 
mathematically what is also referred to as the Cartesian product – it returns every 
possible combination of rows from the "left" table and the "right" table. It can be invoked 
using a CROSS JOIN clause, followed by the name of the other table. For instance, let's 
take the example of the products table. 

Let's say we wanted to know every possible combination of two products you could 
create from a given set of products (like the one found in the products table) in order 
to create a two-month giveaway for marketing purposes. We can use a cross join to get 
the answer to the question using the following query:

SELECT p1.product_id, p1.model, p2.product_id, p2.model

FROM products p1 CROSS JOIN products p2;
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The output of this query is as follows:

Figure 3.9: Cross join of a product to itself

You will observe that, in this particular case, we joined a table to itself. This is a 
perfectly valid operation and is also known as a self join. The result of the query has 144 
rows, which is the equivalent of multiplying the 12 products by the same number (12 * 
12). We can also see that there is no need for a join predicate; indeed, a cross join can 
simply be thought of as just an outer join with no conditions for joining.

In general, cross joins are not used in practice, and can also be very dangerous if you 
are not careful. Cross joining two large tables together can lead to the origination of 
hundreds of billions of rows, which can stall and crash a database. Take care when using 
them.

Note

To learn more about joins, check out the PostgreSQL documentation here: https://
www.postgresql.org/docs/9.1/queries-table-expressions.html.

Up to this point, we have covered the basics of using joins to bring tables together. We 
will now talk about methods for joining queries together in a dataset.

https://www.postgresql.org/docs/9.1/queries-table-expressions.html
https://www.postgresql.org/docs/9.1/queries-table-expressions.html
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Exercise 10: Using Joins to Analyze Sales Dealership

The head of sales at your company would like a list of all customers who bought a car. 
We need to create a query that will return all customer IDs, first names, last names, and 
valid phone numbers of customers who purchased a car.

Note

For all exercises in this book, we will be using pgAdmin 4. All the code files for 
the exercises and the activity in this chapter are also available on GitHub: https://
github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson03.

To solve this problem, do the following:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Use inner join to bring the tables' sales and customers together, which returns 
data for the following: customer IDs, first names, last names, and valid phone 
numbers:

SELECT c.customer_id,
c.first_name,
c.last_name,
c.phone
FROM sales s
INNER JOIN customers c ON c.customer_id=s.customer_id
INNER JOIN products p ON p.product_id=s.product_id
WHERE p.product_type='automobile'
AND c.phone IS NOT NULL

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson03
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson03
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You should get an output similar to the following:

Figure 3.10: Customers who bought a car

We can see that after running the query, we were able to join the data from the 
tables sales and customers and obtain a list of customers who bought a car.

In this exercise, using joins, we were able to bring together related data easily and 
efficiently.

Subqueries

As of now, we have been pulling data from tables. However, you may have observed that 
all SELECT queries produce tables as an output. Knowing this, you may wonder whether 
there is some way to use the tables produced by SELECT queries instead of referencing 
an existing table in your database. The answer is yes. You can simply take a query, insert 
it between a pair of parentheses, and give it an alias. For example, if we wanted to find 
all the salespeople working in California, we could have written the query using the 
following alternative:

SELECT *

FROM salespeople

INNER JOIN (

    SELECT * FROM dealerships

    WHERE dealerships.state = 'CA'
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    ) d

  ON d.dealership_id = salespeople.dealership_id

ORDER BY 1

Here, instead of joining the two tables and filtering for rows with the state equal to 'CA', 
we first find the dealerships where the state equals 'CA' and then inner join the rows in 
that query to salespeople.

If a query only has one column, you can use a subquery with the IN keyword in a WHERE 
clause. For example, another way to extract the details from the salespeople table using 
the dealership ID for the state of California would be as follows:

SELECT *

FROM salespeople

WHERE dealership_id IN  (

    SELECT dealership_id FROM dealerships

    WHERE dealerships.state = 'CA'

    )

ORDER BY 1

As all these examples show, it's quite easy to write the same query using multiple 
techniques. In the next section, we will talk about unions.

Unions

So far, we have been talking about how to join data horizontally. That is, with joins, new 
columns are effectively added horizontally. However, we may be interested in putting 
multiple queries together vertically; that is, by keeping the same number of columns but 
adding multiple rows. An example may help to clarify this.

Let's say you wanted to visualize the addresses of dealerships and customers using 
Google Maps. To do this, you would need both the addresses of customers and 
dealerships You could build a query with all customer addresses as follows:

SELECT street_address, city, state, postal_code

FROM customers

WHERE street_address IS NOT NULL;

You could also retrieve dealership addresses with the following query:

SELECT street_address, city, state, postal_code

FROM dealerships

WHERE street_address IS NOT NULL;
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However, it would be nice if we could assemble the two queries together into one 
list with one query. This is where the UNION keyword comes into play. Using the two 
previous queries, we could create the query:

(

SELECT street_address, city, state, postal_code

FROM customers

WHERE street_address IS NOT NULL

)

UNION

(

SELECT street_address, city, state, postal_code

FROM dealerships

WHERE street_address IS NOT NULL

)

ORDER BY 1;

This produces the following output:

Figure 3.11: Union of Addresses
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There are some caveats to using UNION. First, UNION requires that the subqueries therein 
have the same name columns and the same data types for the column. If it does not, 
the query will not run. Second, UNION technically may not return all the rows from its 
subqueries. UNION, by default, removes all duplicate rows in the output. If you want to 
retain the duplicate rows, it is preferable to use the UNION ALL keyword.

Exercise 11: Generating an Elite Customer Party Guest List using UNION

In this exercise, we will assemble two queries using unions. In order to help build up 
marketing awareness for the new Model Chi, the marketing team would like to throw 
a party for some of ZoomZoom's wealthiest customers in Los Angeles, CA. To help 
facilitate the party, they would like you to make a guest list with ZoomZoom customers 
who live in Los Angeles, CA, as well as salespeople who work at the ZoomZoom 
dealership in Los Angeles, CA. The guest list should include the first name, the last 
name, and whether the guest is a customer or an employee.

To solve this problem, execute the following:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Write a query that will make a list of ZoomZoom customers and company 
employees who live in Los Angeles, CA. The guest list should contain the first 
name, the last name, and whether the guest is a customer or an employee:

(
SELECT first_name, last_name, 'Customer' as guest_type
FROM customers
WHERE city='Los Angeles'
AND state='CA'
)
UNION
(
SELECT first_name, last_name, 'Employee' as guest_type
FROM salespeople s
INNER JOIN dealerships d ON d.dealership_id=s.dealership_id
WHERE d.city='Los Angeles'
AND d.state='CA'
)
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You should get the following output:

Figure 3.12: Customer and employee guest list in Los Angeles, CA

We can see the guest list of customers and employees from Los Angeles, CA after 
running the UNION query.

In the exercise, we used the UNION keyword to combine rows from different queries 
effortlessly.
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Common Table Expressions

Common table expressions are, in a certain sense, just a different version of 
subqueries. Common table expressions establish temporary tables by using the WITH 
clause. To understand this clause better, let's have a look at the following query:

SELECT *

FROM salespeople

INNER JOIN (

    SELECT * FROM dealerships

    WHERE dealerships.state = 'CA'

    ) d

  ON d.dealership_id = salespeople.dealership_id

ORDER BY 1

This could be written using common table expressions as follows: 

WITH d as (

SELECT * FROM dealerships

    WHERE dealerships.state = 'CA'

    )

SELECT *

FROM salespeople

INNER JOIN d ON d.dealership_id = salespeople.dealership_id

ORDER BY 1;

The one advantage of common table expressions is that they are recursive. Recursive 
common table expressions can reference themselves. Because of this feature, we can 
use them to solve problems that other queries cannot. However, recursive common 
table expressions are beyond the scope of this book.

Now that we know several ways to join data together across a database, we will look at 
how to transform the data from these outputs.
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Transforming Data
Often, the raw data presented in a query output may not be in the form we would 
like it to be. We may want to remove values, substitute values, or map values to other 
values. To accomplish these tasks, SQL provides a wide variety of statements and 
functions. Functions are keywords that take in inputs such as a column or a scalar value 
and change those inputs into some sort of output. We will discuss some very useful 
functions for cleaning data in the following sections.

CASE WHEN

CASE WHEN is a function that allows a query to map various values in a column to other 
values. The general format of a CASE WHEN statement is:

CASE WHEN condition1 THEN value1

WHEN condition2 THEN value2

…

WHEN conditionX THEN valueX

ELSE else_value END

Here, condition1 and condition2, through conditionX, are Boolean conditions; value1 
and value2, through valueX, are values to map the Boolean conditions; and else_value 
is the value that is mapped if none of the Boolean conditions are met. For each row, the 
program starts at the top of the CASE WHEN statement and evaluates the first Boolean 
condition. The program then runs through each Boolean condition from the first 
one. For the first condition from the start of the statement that evaluates as true, the 
statement will return the value associated with that condition. If none of the statements 
evaluate as true, then the value associated with the ELSE statement will be returned.

As an example, let's say you wanted to return all rows for customers from the customers 
table. Additionally, you would like to add a column that labels a user as being an Elite 
Customer if they live in postal code 33111, or as a Premium Customer if they live in postal 
code 33124. Otherwise, it will mark the customer as a Standard Customer. This column 
will be called customer_type. We can create this table by using a CASE WHEN statement as 
follows:

SELECT *,

    CASE WHEN postal_code='33111' THEN 'Elite Customer' 

    CASE WHEN postal_code='33124' THEN 'Premium Customer' 

    ELSE 'Standard Customer' END 

  AS customer_type

FROM customers;
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This query will give the following output:

Figure 3.13: Customer type query

As you can see in the preceding table, there is a column called customer_type indicating 
the type of customer a user is. The CASE WHEN statement effectively mapped a postal 
code to a string describing the customer type. Using a CASE WHEN statement, you can 
map values in any way you please.

Exercise 12: Using the CASE WHEN Function to Get Regional Lists

The aim is to create a query that will map various values in a column to other values. 
The head of sales has an idea to try and create specialized regional sales teams that 
will be able to sell scooters to customers in specific regions, as opposed to generic 
sales teams. To make his idea a reality, he would like a list of all customers mapped to 
regions. For customers from the states of MA, NH, VT, ME CT, or RI, he would like them 
labeled as New England. For customers from the states of GA, FL, MS, AL, LA, KY, VA, NC, 
SC, TN, VI, WV, or AR, he would like the customers labeled as Southeast. Customers 
from any other state should be labeled as Other:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Create a query that will produce a customer_id column and a column called region, 
with states categorized like in the following scenario:

SELECT c.customer_id,
CASE WHEN c.state in ('MA', 'NH', 'VT', 'ME', 'CT', 'RI') THEN 'New 
England'
WHEN c.state in ('GA', 'FL', 'MS', 'AL', 'LA', 'KY', 'VA', 'NC', 'SC', 
'TN', 'VI', 'WV', 'AR') THEN 'Southeast'
ELSE 'Other' END as region
FROM customers c
ORDER BY 1
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This query will map a state to one of the regions based on whether the state is in 
the CASE WHEN condition listed for that line.

You should get output similar to the following:

Figure 3.14: Regional query output

In the preceding output, in the case of each customer, a region has been mapped 
based on the state where the customer resides.

In this exercise, we learned to map various values in a column to other values using the 
CASE WHEN function.

COALESCE

Another useful technique is to replace NULL values with a standard value. This can be 
accomplished easily by means of the COALESCE function. COALESCE allows you to list any 
number of columns and scalar values, and, if the first value in the list is NULL, it will try 
to fill it in with the second value. The COALESCE function will keep continuing down the 
list of values until it hits a non-NULL value. If all values in the COALESCE function are NULL, 
then the function returns NULL.
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To illustrate a simple usage of the COALESCE function, let's return to the customers table. 
Let's say the marketing team would like a list of the first names, last names, and phone 
numbers of all male customers. However, for those customers with no phone number, 
they would like the table to instead write the value 'NO PHONE'. We can accomplish this 
request with COALESCE:

SELECT first_name,

last_name,

COALESCE(phone, 'NO PHONE') as phone

FROM customers

ORDER BY 1;

This query produces the following results:

Figure 3.15: Coalesce query

When dealing with creating default values and avoiding NULL, COALESCE will always be 
helpful.
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NULLIF

NULLIF is, in a sense, the opposite of COALESCE. NULLIF is a two-value function and will 
return NULL if the first value equals the second value.

As an example, imagine that the marketing department has created a new direct mail 
piece to send to the customer. One of the quirks of this new piece of advertising is that 
it cannot accept people who have titles longer than three letters. 

In our database, the only known title longer than three characters is 'Honorable'. 
Therefore, they would like you to create a mailing list that is just all the rows with valid 
street addresses and to blot out all titles with NULL that are spelled as 'Honorable'. This 
could be done with the following query:

SELECT customer_id,

        NULLIF(title, 'Honorable') as title,

        first_name,

        last_name,

        suffix,

        email,

        gender,

        ip_address,

        phone,

        street_address,

        city,

        state,

        postal_code,

        latitude,

        longitude,

        date_added

FROM customers c

ORDER BY 1

This will blot out all mentions of 'Honorable' from the title column.



94 | SQL for Data Preparation

LEAST/GREATEST

Two functions that come in handy for data preparation are the LEAST and GREATEST 
functions. Each function takes any number of values and returns the least or the 
greatest of the values, respectively.

A simple use of this variable would be to replace the value if it's too high or low. For 
example, the sales team may want to create a sales list where every scooter is $600 or 
less than that. We can create this using the following query:

SELECT product_id,

model, 

year, 

product_type, 

LEAST(600.00, base_msrp) as base_msrp, 

production_start_date, 

production_end_date

FROM products

WHERE product_type='scooter'

ORDER BY 1;

This query will give the following output:

Figure 3.16: Cheaper scooters
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Casting

Another useful data transformation is to change the data type of a column within a 
query. This is usually done to use a function only available to one data type, such as 
text, while working with a column that is in a different data type, such as a numeric. To 
change the data type of a column, you simply need to use the column::datatype format, 
where column is the column name, and datatype is the data type you want to change the 
column to. For example, to change the year in the products table to a text column in a 
query, use the following query:

SELECT product_id,

model,

year::TEXT,

product_type,

base_msrp,

production_start_date,

production_end_date

FROM products;

This will convert the year column to text. You can now apply text functions to this 
transformed column. There is one final catch; not every data type can be cast to a 
specific data type. For instance, datetime cannot be cast to float types. Your SQL client 
will throw an error if you ever make an unexpected strange conversion.

DISTINCT and DISTINCT ON

Often, when looking through a dataset, you may be interested in determining the 
unique values in a column or group of columns. This is the primary use case of the 
DISTINCT keyword. For example, if you wanted to know all the unique model years in the 
products table, you could use the following query:

SELECT DISTINCT year

FROM products

ORDER BY 1;
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This gives the following result:

Figure 3.17: Distinct model years

You can also use it with multiple columns to get all distinct column combinations 
present. For example, to find all distinct years and what product types were released for 
those model years, you can simply use the following:

SELECT DISTINCT year, product_type

FROM products

ORDER BY 1, 2;

This gives the following output:

Figure 3.18: Distinct model years and product types
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A keyword related to DISTINCT is DISTINCT ON. DISTINCT ON allows you to ensure that 
only one row is returned where one or more columns are always unique in the set. The 
general syntax of a DISTINCT ON query is: 

SELECT DISTINCT ON (distinct_column)

column_1,

column_2,

…

column_n

FROM table

ORDER BY order_column;

Here, dictinct_column is the column or columns you want to be distinct in your query, 
column_1 through column_n are the columns you want in the query, and order_column 
allows you to determine the first row that will be returned for a DISTINCT ON query if 
multiple columns have the same value for distinct_column. For order_column, the first 
column mentioned should be distinct_column. If an ORDER BY clause is not specified, 
the first row will be decided randomly. To clarify, let's say you wanted to get a unique 
list of salespeople where each salesperson has a unique first name. In the case that two 
salespeople have the same first name, we will return the one that started earlier. This 
query would look like this:

SELECT DISTINCT ON (first_name)

*

FROM salespeople

ORDER BY first_name, hire_date;

It will return the following:

Figure 3.19: DISTINCT ON first_name
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This table now guarantees that every row has a distinct username and that the row 
returned if multiple users have a given first name is the person hired there with that 
first name. For example, if the salespeople table has multiple rows with the first name 
'Abby', the row seen in Figure 3.19 with the name 'Abby' (the first row in the outputs) 
was for the first person employed at the company with the name 'Abby'.

Activity 5: Building a Sales Model Using SQL Techniques

The aim of this activity is to clean and prepare our data for analysis using SQL 
techniques. The data science team wants to build a new model to help predict which 
customers are the best prospects for remarketing. A new data scientist has joined their 
team and does not know the database well enough to pull a dataset for this new model. 
The responsibility has fallen to you to help the new data scientist prepare and build a 
dataset to be used to train a model. Write a query to assemble a dataset that will do the 
following:

1.	 Open a SQL client and connect to the database.

2.	 Use INNER JOIN to join the customers table to the sales table.

3.	 Use INNER JOIN to join the products table to the sales table.

4.	 Use LEFT JOIN to join the dealerships table to the sales table.

5.	 Now, return all columns of the customers table and the products table.

6.	 Then, return the dealership_id column from the sales table, but fill in dealership_
id in sales with -1 if it is NULL.

7.	 Add a column called high_savings that returns 1 if the sales amount was 500 less 
than base_msrp or lower. Otherwise, it returns 0.

Expected Output:

Figure 3.20: Building a sales model query

Note

The solution for the activity can be found on page 321.
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Summary
SQL provides us with many tools for mixing and cleaning data. We have learned how 
joins allow users to combine multiple tables, while UNION and subqueries allow us to 
combine multiple queries. We have also learned how SQL has a wide variety of functions 
and keywords that allow users to map new data, fill in missing data, and remove 
duplicate data. Keywords such as CASE WHEN, COALESCE, NULLIF, and DISTINCT allow us to 
make changes to data quickly and easily.

Now that we know how to prepare a dataset, we will learn how to start making 
analytical insights in the next chapter using aggregates.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain the conceptual logic of aggregation

•	 Identify the common SQL aggregate functions

•	 Use the GROUP BY clause to aggregate and combine groups of data for analysis

•	 Use the HAVING clause to filter aggregates

•	 Use aggregate functions to clean data and examine data quality

In this chapter, we will cover SQL's aggregate functions, which are powerful functions for 
summarizing data.

Aggregate Functions 
for Data Analysis

4
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Introduction
In the previous chapter, we discussed how to use SQL to prepare datasets for analysis. 
Once the data is prepared, the next step is to analyze the data. Generally, data scientists 
and analytics professionals will try to understand the data by summarizing it and trying 
to find high-level patterns in the data. SQL can help with this task primarily through the 
use of aggregate functions: functions that take rows as input and return one number for 
each row. In this chapter, we will discuss how to use basic aggregate functions and how 
to derive statistics and other useful information from data using aggregate functions 
with GROUP BY. We will then use the HAVING clause to filter aggregates and see how to 
clean data and examine data quality using aggregate functions. Finally, we look at how 
to use aggregates to understand data quality

Aggregate Functions
With data, we are often interested in understanding the properties of an entire column 
or table as opposed to just seeing individual rows of data. As a simple example, let's say 
you were wondering how many customers ZoomZoom has. You could select all the data 
from the table and then see how many rows were pulled back, but it would be incredibly 
tedious to do so. Luckily, there are functions provided by SQL that can be used to do 
calculations on large groups of rows. These functions are called aggregate functions. 
The aggregate function takes in one or more columns with multiple rows and returns 
a number based on those columns. As an illustration, we can use the COUNT function 
to count how many rows there are in the customers table to figure out how many 
customers ZoomZoom has:

SELECT COUNT(customer_id) FROM customers;

The COUNT function will return the number of rows without a NULL value in the column. 
As the customer_id column is a primary key and cannot be NULL, the COUNT function will 
return the number of rows in the table. In this case, the query will return:

Figure 4.1: Customer count table

As shown here, the COUNT function works with a single column and counts how many 
non-NULL values it has. However, if every single column has at least one NULL value, then 
it would be impossible to determine how many rows there are. To get a count of the 
number of rows in that situation, you could alternatively use the COUNT function with an 
asterisk, (*), to get the total count of rows:

SELECT COUNT(*) FROM customers;
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This query will also return 50,000. 

Let's say, however, that what you were interested in was the number of unique states in 
the customer list. This answer could be queried using COUNT (DISTINCT expression):

SELECT COUNT(DISTINCT state) FROM customers;

This query creates the following output:

Figure 4.2: Count of distinct states

The following figure is a summary of the major aggregate functions used in SQL:

Figure 4.3: Major aggregate functions
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Aggregate functions can also be used with the WHERE clause in order to calculate 
aggregate values for specific subsets of data. For example, if you wanted to know how 
many customers ZoomZoom had in California, you could use the following query:

SELECT COUNT(*) FROM customers WHERE state='CA';

This gives the following result:

Figure 4.4: The COUNT function used with the WHERE clause

You can also do arithmetic with aggregate functions. In the following query, you can 
divide the count of rows in the customers table by two like so:

SELECT COUNT(*)/2 FROM customers;

This query will return 25,000.

You can also use the aggregate functions with each other in mathematical ways. In 
the following query, instead of using the AVG function to calculate the average MSRP 
of products at ZoomZoom, you could "build" the AVG function using SUM and COUNT as 
follows:

SELECT SUM(base_msrp)::FLOAT/COUNT(*) AS avg_base_msrp FROM products

You should get the following result:

Figure 4.5: Average of the base MSRP

Note

The reason we have to cast the sum is that PostgreSQL treats integer division 
differently than float division. For example, dividing 7 by 2 as integers in 
PostgreSQL will give you 3. In order to get a more precise answer of 3.5, you have 
to cast one of the numbers to float.
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Exercise 13: Using Aggregate Functions to Analyze Data

Here, we will analyze and calculate the price of a product using different aggregate 
functions. As you're always curious about the data at your company, you are interested 
in understanding some of the basic statistics around ZoomZoom product prices. You 
now want to calculate the lowest price, the highest price, the average price, and the 
standard deviation of the price for all the products the company has ever sold.

Note

For all exercises in this book, we will be using pgAdmin 4. All the exercises and 
activity are also available on GitHub: https://github.com/TrainingByPackt/SQL-for-
Data-Analytics/tree/master/Lesson04.

To solve this problem, do the following:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the lowest, highest, average, and standard deviation of the price using 
the MIN, MAX, AVG, and STDDEV aggregate functions, respectively, from the products 
table:

SELECT MIN(base_msrp), MAX(base_msrp), AVG(base_msrp), STDDEV(base_msrp)
FROM products;

The following is the output of the preceding code:

Figure 4.6: Statistics of the product price

We can see from the output that the minimum price is 349.99, the maximum price 
is 115000.00, the average price is 33358.32750, and the standard deviation of the 
price is 44484.408.

We have now used aggregate functions to understand the basic statistics of prices.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson04
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson04
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Aggregate Functions with GROUP BY
We have now used aggregate functions to calculate statistics for an entire column. 
However, often, we are not interested in the aggregate values for a whole table, but 
for smaller groups in the table. To illustrate, let's go back to the customers table. We 
know the total number of customers is 50,000. But we might want to know how many 
customers we have in each state. How would we calculate this?

We could determine how many states there are with the following query:

SELECT DISTINCT state FROM customers;

Once you have the list of states, you could then run the following query for each state:

SELECT COUNT(*) FROM customer WHERE state='{state}'

Although you can do this, it is incredibly tedious and can take an incredibly long time if 
there are many states. Is there a better way? There is, and it is through the use of the 
GROUP BY clause.

GROUP BY 

GROUP BY is a clause that divides the rows of a dataset into multiple groups based on 
some sort of key specified in the GROUP BY clause. An aggregate function is then applied 
to all the rows within a single group to produce a single number. The GROUP BY key and 
the aggregate value for the group are then displayed in the SQL output. The following 
diagram illustrates this general process:

Figure 4.7: General GROUP BY computational model
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In Figure 4.7, we can see that the dataset has multiple groups (Group 1, Group 2, …., 
Group N). Here, the Aggregate 1 function is applied to all the rows in Group1, the 
Aggregate 2 function is applied to all the rows in Group 2, and so on.

GROUP BY statements usually have the following structure:

SELECT {KEY}, {AGGFUNC(column1)} FROM {table1} GROUP BY {KEY}

Here, {KEY} is a column or a function on a column used to create individual groups, 
{AGGFUNC(column1)} is an aggregate function on a column that is calculated for all the 
rows within each group, and {table} is the table or set of joined tables from which rows 
are separated into groups.

To better illustrate this point, let's count the number of customers in each US state 
using a GROUP BY query. Using GROUP BY, a SQL user could count the number of 
customers in each state by querying:

SELECT state, COUNT(*) FROM customers GROUP BY state

The computational model looks like the following:

Figure 4.8: Customer count by the state computational model
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Here, AK, AL, AR, and the other keys are abbreviations for US states.

You should get output similar to the following:

Figure 4.9: Customer count by the state query output

You can also use the column number to perform a GROUP BY operation:

SELECT state, COUNT(*) FROM customers

GROUP BY 1

If you want to return the output in alphabetical order, simply use the following query:

SELECT state, COUNT(*) FROM customers GROUP BY state ORDER BY state

Alternatively, we can write:

SELECT state, COUNT(*) FROM customers GROUP BY 1ORDER BY 1
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Either of these queries will give you the following result:

Figure 4.10: Customer count by the state query output in alphabetical order

Often, though, you may be interested in ordering the aggregates themselves. The 
aggregates can be ordered using ORDER BY as follows:

SELECT state, COUNT(*) FROM customers GROUP BY state ORDER BY COUNT(*)

This query gives the following output:

Figure 4.11: Customer count by the state query output in increasing order
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You may also want to count only a subset of the data, such as the total number of male 
customers. To calculate the total number of male customers, you can use the following 
query:

SELECT state, COUNT(*) FROM customers WHERE gender='M' GROUP BY state ORDER 
BY state

This gives you the following output:

Figure 4.12: Male customer count by the state query output in alphabetical order

Multiple Column GROUP BY 

While GROUP BY with one column is powerful, you can go even further and GROUP BY 
multiple columns. Let's say you wanted to get a count of not just the number of 
customers ZoomZoom had in each state, but also of how many male and female 
customers it had in each state. Multiple GROUP BY columns can query the answer as 
follows:

SELECT state, gender, COUNT(*) FROM customers GROUP BY state, genderORDER BY 
state, gender
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This gives the following result:

Figure 4.13: Customer count by the state and gender query outputs in alphabetical order

Any number of columns can be used in a GROUP BY operation in this fashion.

Exercise 14: Calculating the Cost by Product Type Using GROUP BY

In this exercise, we will analyze and calculate the cost of products using aggregate 
functions and the GROUP BY clause. The marketing manager wants to know the 
minimum, maximum, average, and standard deviation of the price for each product type 
that ZoomZoom sells, for a marketing campaign. Follow these steps:

1.	 Open your favorite SQL client and connect to the sample database, sqlda.

2.	 Calculate the lowest, highest, average, and standard deviation price using the MIN, 
MAX, AVG, and STDDEV aggregate functions, respectively, from the products table and 
use GROUP BY to check the price of all the different product types: 

SELECT product_type, MIN(base_msrp), MAX(base_msrp), AVG(base_msrp), 
STDDEV(base_msrp)
FROM products
GROUP BY 1
ORDER BY 1;
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You should get the following result:

Figure 4.14: Basic price statistics by product type

From the preceding output, the marketing manager can check and compare the 
price of various products that ZoomZoom sells for the campaign.

In this exercise, we calculated the basic statistics by product type using aggregate 
functions and the GROUP BY clause.

Grouping Sets

Now, let's say you wanted to count the total number of customers you have in each 
state, while simultaneously, in the same aggregate functions, counting the total number 
of male and female customers you have in each state. How could you accomplish that? 
One way is by using the UNION ALL keyword we discussed in Chapter 2, The Basics of SQL 
for Analytics, like so: 

(

SELECT state, NULL as gender, COUNT(*)

FROM customers

GROUP BY 1, 2

ORDER BY 1, 2

)

UNION ALL

(

(

SELECT state, gender, COUNT(*)

FROM customers

GROUP BY 1, 2
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ORDER BY 1, 2

)

)

ORDER BY 1, 2

The query produces the following result:

Figure 4.15: Customer count by the state and gender query outputs in alphabetical order

However, using UNION ALL is tedious and can be very difficult to write. An alternative 
way is to use grouping sets. Grouping sets allow a user to create multiple categories of 
viewing, similar to the UNION ALL statement we just saw. For example, using the GROUPING 
SETS keyword, you could rewrite the previous UNION ALL query as:

SELECT state, gender, COUNT(*)

FROM customers

GROUP BY GROUPING SETS (

(state),

(gender),

(state, gender)

)

ORDER BY 1, 2

This creates the same output as the previous UNION ALL query.
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Ordered Set Aggregates

Up to this point, all the aggregates we have discussed did not depend on the order 
of the data. Using ORDER BY, we can order the data, but it was not required. However, 
there are a subset of aggregates statistics that do depend on the order of the column to 
calculate. For instance, the median of a column is something that requires the order of 
the data to be specified. For calculating these use cases, SQL offers a series of functions 
called ordered set aggregates functions. The following figure lists the major ordered-
set aggregate functions:

Figure 4.16: Major ordered set aggregate functions

The functions are used with the following format:

SELECT {ordered_set_function} WITHIN GROUP (ORDER BY {order_column}) 
FROM {table};

Where {ordered_set_function} is the ordered set aggregate function, {order_column} is 
the column to order results for the function by, and {table} is the table the column is 
in.

To illustrate, let's say you wanted to calculate the median price of the products table. 
You could use the following query:

SELECT PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY base_msrp) AS median

from products;

The reason we use 0.5 is because the median is the 50th percentile, which is 0.5 as a 
fraction. This gives the following result:

Figure 4.17: Median of Product Prices
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With ordered set aggregate functions, we now have tools for calculating virtually any 
aggregate statistic of interest for a data set. In the next section, we look at how to use 
aggregates to deal with data quality.

The HAVING Clause
We can now perform all sorts of aggregate operations using GROUP BY. Sometimes, 
though, certain rows in aggregate functions may not be useful, and you may like to 
remove them from the query output. For example, when doing the customer counts, 
perhaps you are only interested in places that have at least 1,000 customers. Your first 
instinct may be to write something such as this:

SELECT state, COUNT(*)

FROM customers

WHERE COUNT(*)>=1,000

GROUP BY state

ORDER BY state

However, you will find that the query does not work and gives you the following error:

Figure 4.18: Error showing the query not working

In order to use filter on aggregate functions, you need to use a new clause, HAVING. The 
HAVING clause is similar to the WHERE clause, except it is specifically designed for GROUP BY 
queries. The general structure of a GROUP BY operation with a HAVING statement is:

SELECT {KEY}, {AGGFUNC(column1)}

FROM {table1}

GROUP BY {KEY}

HAVING {OTHER_AGGFUNC(column2)_CONDITION}

Here, {KEY} is a column or function on a column that is used to create individual groups, 
{AGGFUNC(column1)} is an aggregate function on a column that is calculated for all the 
rows within each group, {table} is the table or set of joined tables from which rows are 
separated into groups, and {OTHER_AGGFUNC(column2)_CONDITION} is a condition similar to 
what you would put in a WHERE clause involving an aggregate function.



116 | Aggregate Functions for Data Analysis

Exercise 15: Calculating and Displaying Data Using the HAVING Clause

In this exercise, we will calculate and display data using the HAVING clause. The sales 
manager of ZoomZoom wants to know the customer count for the states that have at 
least 1,000 customers who have purchased any product from ZoomZoom. Help the 
manager to extract the data.

To solve this problem, do the following:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the customer count by the state with at least 1000 customers using the 
HAVING clause:

SELECT state, COUNT(*)
FROM customers
GROUP BY state
HAVING COUNT(*)>=1,000
ORDER BY state

This query will then give you the following output:

Figure 4.19: Customer count by the state with at least 1,000 customers

We can see the states that have more than 1,000 ZoomZoom customers, with CA 
having 5038, the highest number of customers, and CO having 1042, the lowest 
number of customers.

In this exercise, we used the HAVING clause to calculate and display data more efficiently.
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Using Aggregates to Clean Data and Examine Data Quality
In Chapter 2, The Basics of SQL for Analytics, we discussed how SQL can be used to 
clean data. While the techniques in Chapter 2, The Basics of SQL for Analytics for 
Analytics, do an excellent job of cleaning data, aggregates add a number of techniques 
that can make cleaning data even easier and more comprehensive. In this section, we 
will look at some of these techniques.

Finding Missing Values with GROUP BY

As mentioned in Chapter 2, The Basics of SQL for Analytics, one of the biggest issues 
with cleaning data is dealing with missing values. While in Chapter 2, The Basics of SQL 
for Analytics, we discussed how to find missing values and how we could get rid of 
them, we did not say too much about how we could determine the extent of missing 
data in a dataset. Primarily, it was because we did not have the tools to deal with 
summarizing information in a dataset – that is, until this chapter.

Using aggregates, identifying the amount of missing data can tell you not only which 
columns have missing data, but also whether columns are even usable because so 
much of the data is missing. Depending on the extent of missing data, you will have 
to determine whether it makes the most sense to delete rows with missing data, fill 
in missing values, or to just delete columns as they do not have enough data to make 
definitive conclusions.

The easiest way to determine whether a column is missing values is to use a modified 
CASE WHEN statement with the SUM and COUNT functions to determine what percentage of 
data is missing. Generally speaking, the query looks as follows:

SELECT SUM(CASE WHEN {column1} IS NULL OR {column1} IN ({missing_values}) 
THEN 1 ELSE 0 END)::FLOAT/COUNT(*)

FROM {table1}

Here, {column1} is the column that you want to check for missing values, {missing_
values} is a comma-separated list of values that are considered missing, and {table1} is 
the table or subquery with the missing values.

Based on the results of this query, you may have to vary your strategy for dealing with 
missing data. If a very small percentage of your data is missing (<1%), then you might 
consider just filtering out or deleting the missing data from your analysis. If some of 
your data is missing (<20%), you may consider filling in your missing data with a typical 
value, such as the mean or the mode, to perform an accurate analysis. If, however, more 
than 20% of your data is missing, you may have to remove the column from your data 
analysis, as there would not be enough accurate data to make accurate conclusions 
based on the values in the column.
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Let's look at missing data in the customers table. Specifically, let's look at the missing 
data in the street_address column with the following query:

SELECT SUM(CASE WHEN state IS NULL OR state IN ('') THEN 1 ELSE 0 
END)::FLOAT/COUNT(*) 

	 AS missing_state 

FROM customers;

This gives the following output:

Figure 4.20: Customer count by the state with at least 1,000 customers

As seen here, a little under 11% of the state data is missing. For analysis purposes, you 
may want to consider these customers are from CA, as CA is the most common state 
in the data. However, the far more accurate thing to do would be to find and fill in the 
missing data.

Measuring Data Quality with Aggregates

One of the major themes you will find in data analytics is that analysis is fundamentally 
only useful when there is a strong variation in data. A column where every value is 
exactly the same is not a particularly useful column. To this end, it often makes sense to 
determine how many distinct values there are in a column. To measure the number of 
distinct values in a column, we can use the COUNT DISTINCT function to find how many 
distinct values there are. The structure of such a query would look like this:

SELECT COUNT (DISTINCT {column1})

FROM {table1}

Here, {column1} is the column you want to count and {table1} is the table with the 
column.

Another common task that you might want to do is determine whether every value in 
a column is unique. While in many cases this can be solved by setting a column with a 
PRIMARY KEY constraint, this may not always be possible. To solve this problem, we can 
write the following query:

SELECT COUNT (DISTINCT {column1})=COUNT(*)

FROM {table1}
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Here, {column1} is the column you want to count and {table1} is the table with the 
column. If this query returns True, then the column has a unique value for every single 
row; otherwise, at least one of the values is repeated. If values are repeated in a column 
that you are expecting to be unique, there may be some issues with data ETL (Extract, 
Transform, Load) or maybe there is a join that has caused a row to be repeated.

As a simple example, let's verify that the customer_id column in customers is unique: 

SELECT COUNT (DISTINCT customer_id)=COUNT(*) AS equal_ids

FROM customers;

This query gives the following output:

Figure 4.21: Checking whether every row has a unique customer ID

Activity 6: Analyzing Sales Data Using Aggregate Functions

The goal of this activity is to analyze data using aggregate functions. The CEO, COO, 
and CFO of ZoomZoom would like to gain some insights on what might be driving sales. 
Now that the company feels they have a strong enough analytics team with your arrival. 
The task has been given to you, and your boss has politely let you know that this project 
is the most important project the analytics team has worked on:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the total number of unit sales the company has done.

3.	 Calculate the total sales amount in dollars for each state.

4.	 Identify the top five best dealerships in terms of the most units sold (ignore 
internet sales).

5.	 Calculate the average sales amount for each channel, as seen in the sales table, 
and look at the average sales amount first by channel sales, then by product_id, and 
then by both together.
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Expected Output:

Figure 4.22: Sales after the GROUPING SETS channel and product_id

Note

The solution for the activity can be found on page 322.

Summary
In this chapter, we learned about the incredible power of aggregate functions. We 
learned about several of the most common aggregate functions and how to use them. 
We then used the GROUP BY clause and saw how it can be used to divide datasets into 
groups and calculate summary statistics for each group. We then learned how to use 
the HAVING clause to further filter a query. Finally, we used aggregate functions to help 
us clean data and analyze data quality. 

In the next chapter, we will learn about a close cousin of aggregate functions, window 
functions, and see how they can be utilized to understand data.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Explain what a window function is

•	 Write basic window functions

•	 Use common window functions to calculate statistics

•	 Analyze sales data using window functions and a window frame

In this chapter, we will cover window functions, functions similar to an aggregate function but 
that allow a new range of capabilities and insights.

Window Functions for 
Data Analysis

5
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Introduction
In the previous chapter, we discussed aggregate functions, functions that can take a 
large group of rows and output a single value for them. Often, being able to summarize 
a group of rows to a single value is important and useful. However, there are times 
when you want to keep the individual rows as well as gaining a summarizing value. 
To do this, in this chapter, we will introduce a new set of functions named window 
functions, which can calculate aggregate statistics while keeping individual rows. These 
functions are very useful for being able to calculate new types of statistics, such as 
ranks and rolling averages, with relative ease within SQL. In this chapter, we will learn 
about what window functions are, and how we can use them to calculate statistics.

Window Functions
Aggregate functions allow us to take many rows and convert those rows into one 
number. For example, the COUNT function takes in the rows of a table and returns the 
number of rows there are. However, we sometimes want to be able to calculate multiple 
rows but still keep all the rows following the calculation. For example, let's say you 
wanted to rank every user in order according to the time they became a customer, with 
the earliest customer being ranked 1, the second-earliest customer being ranked 2, and 
so on. You can get all the customers using the following query:

SELECT *

FROM customers

ORDER BY date_added;

You can order customers from the earliest to the most recent, but you can't assign them 
a number. You can use an aggregate function to get the dates and order them that way:

SELECT date_added, COUNT(*)

FROM customers

GROUP BY date_added

ORDER BY date_added
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The following is the output of the preceding code:

Figure 5.1: Aggregate date-time ordering

While this gives the dates, it gets rid of the remainder of the columns, and still provides 
no rank information. What can we do? This is where window functions come into play. 
Window functions can take multiple rows of data and process them, but still retain all 
the information in the rows. For things such as ranks, this is exactly what you need.

For better understanding though, let's see what a windows function query looks like in 
the next section.

The Basics of Window Functions

The following is the basic syntax of a window function:

SELECT {columns},

{window_func} OVER (PARTITION BY {partition_key} ORDER BY {order_key})

FROM table1;

Where {columns} are the columns to retrieve from tables for the query, {window_func} 
is the window function you want to use, {partition_key} is the column or columns you 
want to partition on (more on this later), {order_key} is the column or columns you 
want to order by, and table1 is the table or joined tables you want to pull data from. The 
OVER keyword indicates where the window definition starts.
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To illustrate, let's use an example. You might be saying to yourself that you do not know 
any window functions, but the truth is, you do! All aggregate functions can be used as 
window functions. Let's use COUNT(*) in the following query:

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER () as total_customers

FROM customers

ORDER BY customer_id;

This leads to the following results:

Figure 5.2: Customers listed using the COUNT(*) window query

As can be seen in Figure 5.2, the customers query returns title, first_name, and last_
name, just like a typical SELECT query. However, there is now a new column called 
total_customers. This column contains the count of users that would be created by the 
following query:

SELECT COUNT(*)

FROM customers;

This returns 50,000. As discussed, the query returned both all of the rows and the 
COUNT(*) in the query, instead of just returning the count as a normal aggregate function 
would.
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Now, let's examine the other parameters of the query. What happens if we use 
PARTITION BY, such as in the following query?

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER (PARTITION BY gender) as total_customers

FROM customers

ORDER BY customer_id;

The following is the output of the preceding code:

Figure 5.3: Customers listed using COUNT(*) partitioned by the gender window query

Here, you will see that total_customers have now changed counts to one of two values, 
24,956 or 25,044. These counts are the counts for each gender, which you can see with 
the following query:

SELECT gender, COUNT(*)

FROM customers

GROUP BY 1
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For females, the count is equal to the female count, and for males, the count is equal to 
the male count. What happens now if we use ORDER BY in the partition, as follows?

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER (ORDER BY customer_id) as total_customers

FROM customers

ORDER BY customer_id;

The following is the output of the preceding code:

Figure 5.4: Customers listed using COUNT(*) ordered by the customer_id window query

You will notice something akin to a running count for total customers. What is going 
on? This is where the "window" in window function comes from. When you use a 
window function, the query creates a "window" over the table on which it bases the 
count. PARTITION BY works like GROUP BY, dividing the dataset into multiple groups. 
For each group, a window is created. When ORDER BY is not specified, the window is 
assumed to be the entire group. However, when ORDER BY is specified, the rows in the 
group are ordered according to it, and for every row, a window is created over which 
a function is applied. Without specifying a window, the default behavior is to create a 
window to encompass every row from the first row based on ORDER BY to the current 
row being evaluated by a function, as shown in Figure 5.5. It is over this window that the 
function is applied. 
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As shown in Figure 5.5, the window for the first row contains one row and returns a 
count of 1, the window for the second row contains two rows and returns a count of 2, 
whereas the window for the third row contains three rows and thus returns a count of 3 
in the total_customers column:

Figure 5.5: Windows for customers using COUNT(*) ordered by the customer_id window query

What happens when you combine PARTITION BY and ORDER BY? Let's look at the following 
query:

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER (PARTITION BY gender ORDER BY customer_id) as total_customers

FROM customers

ORDER BY customer_id;

When you run the preceding query, you get the following result:

Figure 5.6: Customers listed using COUNT(*) partitioned by gender ordered  
by the customer_id window query
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Like the previous query we ran, it appears to be some sort of rank. However, it seems to 
differ based on gender. What is this query doing? As discussed for the previous query, 
the query first divides the table into two subsets based on PARTITION BY. Each partition 
is then used as a basis for doing a count, with each partition having its own set of 
windows. 

This process is illustrated in Figure 5.7. This process produces the count we see 
in Figure 5.7. The three keywords, OVER(), PARTITION BY, and ORDER BY, create the 
foundation to unlock the power of WINDOW functions.

Figure 5.7: Windows for customers listed using COUNT(*) partitioned by gender ordered by the 
customer_id window query

Exercise 16: Analyzing Customer Data Fill Rates over Time

For the last 6 months, ZoomZoom has been experimenting with various features in 
order to encourage people to fill out all fields on the customer form, especially their 
address. To analyze this data, the company would like a running total of how many 
users have filled in their street address over time. Write a query to produce these 
results.

Note

For all exercises in this chapter, we will be using pgAdmin 4. All the exercise 
and activities in this chapter are also available on GitHub: https://github.com/
TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson05.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson05
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson05
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1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Use window functions and write a query that will return customer information 
and how many people have filled out their street address. Also, order the list as per 
the date. The query would look like:

SELECT customer_id, street_address, date_added::DATE, 
COUNT(CASE WHEN street_address IS NOT NULL THEN customer_id ELSE NULL END)
    OVER (ORDER BY date_added::DATE) as total_customers_filled_street
FROM customers
ORDER BY date_added;

You should get the following result:

Figure 5.8: Street address filter ordered by the date_added window query

We now have every customer ordered by signup date and can see how the number 
of people filling out the street field changes over time.

In this exercise, we have learned how to use window functions to analyze data.
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The WINDOW Keyword

Now that we understand the basics of window functions, we will introduce some 
syntax that will make it easier to write window functions. For some queries, you may be 
interested in calculating the exact same window for different functions. For example, 
you may be interested in calculating a running total number of customers and the 
number of customers with a title in each gender with the following query:

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER (PARTITION BY gender ORDER BY customer_id) as total_customers,

SUM(CASE WHEN title IS NOT NULL THEN 1 ELSE 0 END)

    OVER (PARTITION BY gender ORDER BY customer_id) as total_customers_title

FROM customers

ORDER BY customer_id;

The following is the output of the preceding code:

Figure 5.9: Running total of customers overall and with the title by gender window query

Although the query gives you the result, it can be tedious to write, especially the WINDOW 
clause. Is there a way in which we can simplify it? The answer is yes, and that is with 
another WINDOW clause. The WINDOW clause facilitates the aliasing of a window. 
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With our previous query, we can simplify the query by writing it as follows:

SELECT customer_id, title, first_name, last_name, gender,

COUNT(*) OVER w as total_customers,

SUM(CASE WHEN title IS NOT NULL THEN 1 ELSE 0 END)

    OVER w as total_customers_title

FROM customers

WINDOW w AS (PARTITION BY gender ORDER BY customer_id)

ORDER BY customer_id;

This query should give you the same result as seen in Figure 5.9. However, we did 
not have to write a long PARTITION BY and ORDER BY query for each window function. 
Instead, we simply made an alias with the defined window w.

Statistics with Window Functions
Now that we understand how window functions work, we can start using them to 
calculate useful statistics, such as ranks, percentiles, and rolling statistics. 

In the following table, we have summarized a variety of statistical functions that are 
useful. It is also important to emphasize again that all aggregate functions can also be 
used as window functions (AVG, SUM, COUNT, and so on):

Figure 5.10: Statistical window functions
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Exercise 17: Rank Order of Hiring

ZoomZoom would like to promote salespeople at their regional dealerships to 
management and would like to consider tenure in their decision. Write a query that will 
rank the order of users according to their hire date for each dealership:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate a rank for every salesperson, with a rank of 1 going to the first hire, 2 to 
the second hire, and so on, using the RANK() function:

SELECT *,
RANK() OVER (PARTITION BY dealership_id ORDER BY hire_date)
FROM salespeople
WHERE termination_date IS NULL;

The following is the output of the preceding code:

Figure 5.11: Salespeople rank-ordered by tenure

Here, you can see every salesperson with their info and rank in the rank column 
based on their hire date for each dealership.

In this exercise, we use the RANK() function to rank the data in a dataset in a certain 
order.

Note

DENSE_RANK() could also just be used as easily as RANK().



Statistics with Window Functions | 135

Window Frame

When we discussed the basics of window functions, it was mentioned that, by default, a 
window is set for each row to encompass all rows from the first row in the partition to 
the current row, as seen in Figure 5.5. However, this is the default and can be adjusted 
using the window frame clause. A windows function query using the window frame 
clause would look like the following:

SELECT {columns},

{window_func} OVER (PARTITION BY {partition_key} ORDER BY {order_key} 
{rangeorrows} BETWEEN {frame_start} AND {frame_end})

FROM {table1};

Here, {columns} are the columns to retrieve from tables for the query, {window_func} 
is the window function you want to use, {partition_key} is the column or columns 
you want to partition on (more on this later), {order_key} is the column or columns 
you want to order by, {rangeorrows} is either the keyword RANGE or the keyword ROWS, 
{frame_start} is a keyword indicating where to start the window frame, {frame_end} is a 
keyword indicating where to end the window frame, and {table1} is the table or joined 
tables you want to pull data from.

One point of difference to consider is the difference between using RANGE or ROW in 
a frame clause. ROW refer to actual rows and will take the rows before and after the 
current row to calculate values. RANGE differs when two rows have the same values 
based on the ORDER BY clause used in the window. If the current row used in the window 
calculation has the same value in the ORDER BY clause as one or more rows, then all of 
these rows will be added to the window frame.

Another point is to consider the values that {frame_start} and {frame_end} can take. To 
give further details, {frame_start} and {frame_end} can be one of the following values:

•	 UNBOUNDED PRECEDING: a keyword that, when used for {frame_start}, refers 
to the first record of the partition, and, when used for {frame_end}, refers to the 
last record of the partition

•	 {offset} PRECEDING: a keyword referring to integer {offset} rows or ranges 
before the current row

•	 CURRENT ROW: the current row

•	 {offset} FOLLOWING: a keyword referring to integer {offset} rows or ranges after 
the current row
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By adjusting the window, various useful statistics can be calculated. One such useful 
statistic is the rolling average. The rolling average is simply the average for a statistic in 
a given time window. Let's say you want to calculate the 7-day rolling average of sales 
over time for ZoomZoom. This calculation could be accomplished with the following 
query:

WITH daily_sales as (

SELECT sales_transaction_date::DATE,

SUM(sales_amount) as total_sales

FROM sales

GROUP BY 1

),

moving_average_calculation_7 AS (

SELECT sales_transaction_date, total_sales,

AVG(total_sales) OVER (ORDER BY sales_transaction_date ROWS BETWEEN 7 
PRECEDING and CURRENT ROW) AS sales_moving_average_7,

ROW_NUMBER() OVER (ORDER BY sales_transaction_date) as row_number

FROM daily_sales

ORDER BY 1)

SELECT sales_transaction_date,

CASE WHEN row_number>=7 THEN sales_moving_average_7 ELSE NULL END

   AS sales_moving_average_7 

FROM moving_average_calculation_7; 
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The following is the output of the preceding code:

Figure 5.12: The 7-day moving average of sales

The reason the first 7 rows are null is that the 7-day moving average is only defined if 
there are 7 days' worth of information, and the window calculation will still calculate 
values for the first 7 days using the first few days.
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Exercise 18: Team Lunch Motivation

To help improve sales performance, the sales team has decided to buy lunch for all 
salespeople at the company every time they beat the figure for best daily total earnings 
achieved over the last 30 days. Write a query that produces the total sales in dollars 
for a given day and the target the salespeople have to beat for that day, starting from 
January 1, 2019:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the total sales for a given day and the target using the following query:

WITH daily_sales as (
SELECT sales_transaction_date::DATE,
SUM(sales_amount) as total_sales
FROM sales
GROUP BY 1
),

sales_stats_30 AS (
SELECT sales_transaction_date, total_sales,
MAX(total_sales) OVER (ORDER BY sales_transaction_date ROWS BETWEEN 30 
PRECEDING and 1 PRECEDING) 
AS max_sales_30
FROM daily_sales
ORDER BY 1)

SELECT sales_transaction_date,
total_sales,
max_sales_30
FROM sales_stats_30
WHERE sales_transaction_date>='2019-01-01';
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You should get the following results:

Figure 5.13: Best sales over the last 30 days

Notice the use of a window frame from 30 PRECEDING to 1 PRECEDING to remove the 
current row from the calculation.

As can be seen in this exercise, window frames make calculating moving statistics 
simple, and even kind of fun!
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Activity 7: Analyzing Sales Using Window Frames and Window Functions

It's the holidays, and it's time to give out Christmas bonuses at ZoomZoom. Sales 
team want to see how the company has performed overall, as well as how individual 
dealerships have performed within the company. To achieve this, ZoomZoom's head of 
Sales would like you to run an analysis for them:

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the total sales amount by day for all of the days in the year 2018 (that is, 
before the date January 1, 2019).

3.	 Calculate the rolling 30-day average for the daily number of sales deals.

4.	 Calculate what decile each dealership would be in compared to other dealerships 
based on their total sales amount.

Expected Output:

Figure 5.14: Decile for dealership sales amount

Note

The solution for the activity can be found on page 325.
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Summary
In this chapter, we learned about the power of window functions. We looked at how 
to construct a basic window function using OVER, PARTITION BY, and ORDER BY. We then 
looked at how to calculate statistics using window functions, and how to adjust a 
window frame to calculate rolling statistics. 

In the next chapter, we will look at how to import and export data in order to utilize 
SQL with other programs. We will use the COPY command to upload data to your 
database in bulk. We will also use Excel to process data from your database and then 
simplify your code using SQLAlchemy.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Use psql at the command line to efficiently interact with your database

•	 Use the COPY command to upload data to your database in bulk

•	 Use Excel to process data from your database

•	 Simplify your code using SQLAlchemy in Python

•	 Upload and download data to and from your database in bulk with R and Python

This chapter covers how to move data between your database and other analytics processing 
pipelines.

Importing and 
Exporting Data

6
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Introduction
In order to extract insights from your database, you need data. And, while it's possible 
that some of that data will be populated and updated for you, there are always going to 
be scenarios where you need more data that is not yet in your database. In this chapter, 
we are going to explore how we can efficiently upload data to our centralized database 
for further analysis.

Not only will we want to upload data to our database for further analysis, but there are 
also going to be times where we want to download data from our database for further 
processing. We will also explore the process of extracting data from our database.

One of the primary reasons you would want to upload or download data to or from your 
database is because you have other analytics tools that you want to use. You will often 
want to use other software to analyze your data. In this chapter, we will also look at 
how you can integrate your workflows with two specific programming languages that 
are frequently used for analytics: Python and R. These languages are powerful because 
they are easy to use, allow for advanced functionality, are open source, and have large 
communities supporting them as a result of their popularity. We will look at how 
large datasets can be passed between our programming languages and our databases 
efficiently so that we can have workflows that take advantage of all of the tools available 
to us.

With this in mind, we will start by looking at the bulk uploading and downloading 
functionality in the Postgres command-line client, psql, and then move on to importing 
and exporting data using Python and R.

The COPY Command
At this point, you are probably pretty familiar with the SELECT statement (covered in 
Chapter 2, The Basics of SQL for Analytics), which allows us to retrieve data from our 
database. While this command is useful for small datasets that can be scanned quickly, 
we will often want to save a large dataset to a file. By saving these datasets to files, we 
can further process or analyze the data locally using Excel, Python, or R. In order to 
retrieve these large datasets, we can use the Postgres COPY command, which efficiently 
transfers data from a database to a file, or from a file to a database.
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Getting Started with COPY

The COPY statement retrieves data from your database and dumps it in the file format of 
your choosing. For example, take the following statement:

COPY (SELECT * FROM customers LIMIT 5) TO STDOUT WITH CSV HEADER;

Figure 6.1: Using COPY to print results to STDOUT in a CSV file format

This statement returns five rows from the table, with each record on a new line, and 
each value separated by a comma, in a typical .csv file format. The header is also 
included at the top.

Here is the breakdown of this command and the parameters that were passed in:

•	 COPY is simply the command used to transfer data to a file format.

•	 (SELECT * FROM customers LIMIT 5) is the query that we want to copy.

•	 TO STDOUT indicates that the results should be printed rather than saved to a file 
on the hard drive. "Standard Out" is the common term for displaying output in a 
command-line terminal environment.

•	 WITH is an optional keyword used to separate the parameters that we will use in 
the database-to-file transfer.

•	 CSV indicates that we will use the CSV file format. We could have also specified 
BINARY or left this out altogether and received the output in text format.

•	 HEADER indicates that we want the header printed as well.

Note

You can learn more about the parameters available for the COPY command in the 
Postgres documentation: https://www.postgresql.org/docs/current/sql-copy.html.

https://www.postgresql.org/docs/current/sql-copy.html
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While the STDOUT option is useful, often, we will want to save data to a file. The COPY 
command offers functionality to do this, but data is saved locally on the Postgres 
server. You must specify the full file path (relative file paths are not permitted). If you 
have your Postgres database running on your computer, you can test this out using the 
following command:

COPY (SELECT * FROM customers LIMIT 5) TO '/path/to/my_file.csv' WITH CSV 
HEADER;

Copying Data with psql

While you have probably been using a frontend client to access your Postgres 
database, you might not have known that one of the first Postgres clients was actually 
a command-line program called psql. This interface is still in use today, and psql offers 
some great functionality for running Postgres scripts and interacting with the local 
computing environment. It allows for the COPY command to be called remotely using the 
psql-specific \copy instruction, which invokes COPY. 

To launch psql, you can run the following command in the Terminal:

psql -h my_host -p 5432 -d my_database -U my_username

In this command, we pass in flags that provide the information needed to make the 
database connection. In this case:

•	 -h is the flag for the hostname. The string that comes after it (separated by a 
space) should be the hostname for your database.

•	 -p is the flag for the database port. Usually, this is 5432 for Postgres databases.

•	 -d is the flag for the database name. The string that comes after it should be the 
database name.

•	 -U is the flag for the username. It is succeeded by the username.

Once you have connected to your database using psql, you can test out the \copy 
instruction by using the following command:

\copy (SELECT * FROM customers LIMIT 5) TO 'my_file.csv' WITH CSV HEADER;

Figure 6.2: Using \copy from psql to print results to a CSV file format
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Here is the breakdown of this command and the parameters that were passed in:

•	 \copy is invoking the Postgres COPY ... TO STDOUT... command to output the data.

•	 (SELECT * FROM customers LIMIT 5) is the query that we want to copy.

•	 TO 'my_file.csv' indicates that psql should save the output from standard into 
my_file.csv.

•	 The WITH CSV HEADER parameters operate the same as before.

We can also take a look at my_file.csv:

Figure 6.3: The CSV file that we created using our \copy command

It is worth noting here that the formatting can look a little messy for the \copy 
command, because it does not allow for commands with new lines. A simple way around 
this is to create a view containing your data before the \copy command and drop the 
view after your \copy command has finished. For example:

CREATE TEMP VIEW customers_sample AS (

    SELECT *

    FROM customers

    LIMIT 5

);

\copy customers_sample TO 'my_file.csv' WITH CSV HEADER

DROP VIEW customers_sample;

While you can perform this action either way, for readability purposes, we will use the 
latter format in this book for longer queries.
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Configuring COPY and \copy

There are several options to configure the COPY and \copy commands:

•	 FORMAT format_name can be used to specify the format. The options for  
format_name are csv, text, or binary. Alternatively, you can simply specify CSV or 
BINARY without the FORMAT keyword, or not specify the format at all and let the 
output default to a text file format. 

•	 DELIMITER 'delimiter_character' can be used to specify the delimiter character 
for CSV or text files (for example ',' for CSV files, or '|' for pipe-separated files)

•	 NULL 'null_string' can be used to specify how null values should be represented 
(for example, ' ' if blanks represent null values, or 'NULL' if that's how missing 
values should be represented in the data).

•	 HEADER specifies that the header should be output.

•	 QUOTE 'quote_character' can be used to specify how fields with special characters 
(for example, a comma in a text value within a CSV file) can be wrapped in quotes 
so that they are ignored by COPY.

•	 ESCAPE 'escape_character' specifies the character that can be used to escape the 
following character.

•	 ENCODING 'encoding_name' allows specification of the encoding, which is 
particularly useful when you are dealing with foreign languages that contain 
special characters or user input.

Using COPY and \copy to Bulk Upload Data to Your Database

As we have seen, the copy commands can be used to efficiently download data, but they 
can also be used to upload data.

The COPY and \copy commands are far more efficient at uploading data than an INSERT 
statement. There are a few reasons for this:

•	 When using COPY, there is only one commit, which occurs after all of the rows have 
been inserted.

•	 There is less communication between the database and the client, so there is less 
network latency.
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•	 Postgres includes optimizations for COPY that would not be available through 
INSERT.

Here's an example of using the \copy command to copy rows into the table from a 
file: 

\copy customers FROM 'my_file.csv' CSV HEADER DELIMITER ',';

Here is the breakdown of this command and the parameters that were passed in:

•	 \copy is invoking the Postgres COPY ... FROM STDOUT... command to load the data 
into the database.

•	 Customers specifies the name of the table that we want to append to.

•	 FROM 'my_file.csv' specifies that we are uploading records from my_file.csv – 
the FROM keyword specifies that we are uploading records as opposed to the TO 
keyword that we used to download records.

•	 The WITH CSV HEADER parameters operate the same as before.

•	 DELIMITER ',' specifies what the delimiter is in the file. For a CSV file, this 
is assumed to be a comma, so we do not need this parameter. However, for 
readability, it might be useful to explicitly define this parameter, for no other 
reason than to remind yourself how the file has been formatted.

Note

While COPY and \copy are great for exporting data to other tools, there is 
additional functionality in Postgres for exporting a database backup. For these 
maintenance tasks, you can use pg_dump for a specific table and pg_dumpall 
for an entire database or schema. These commands even let you save data in 
compressed (tar) format, which saves space. Unfortunately, the output format 
from these commands is typically SQL, and it cannot be readily consumed outside 
of Postgres. Therefore, it does not help us with importing or exporting data to and 
from other analytics tools, such as Python and R.
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Exercise 19: Exporting Data to a File for Further Processing in Excel

In this exercise, we will be saving a file containing the cities with the highest number of 
ZoomZoom customers. This analysis will help the ZoomZoom executive committee to 
decide where they might want to open the next dealership.

Note

For the exercises and activities in this chapter, you will need to be able to access 
your database with psql. https://github.com/TrainingByPackt/SQL-for-Data-
Analytics/tree/master/Lesson07.

1.	 Open a command-line tool to implement this exercise, such as cmd for Windows 
or Terminal for Mac.

2.	 In your command-line interface, connect to your database using the psql 
command.

3.	 Copy the customers table from your zoomzoom database to a local file in .csv format. 
You can do this with the following command:

CREATE TEMP VIEW top_cities AS (
    SELECT city,
           count(1) AS number_of_customers
    FROM customers
    WHERE city IS NOT NULL
    GROUP BY 1
    ORDER BY 2 DESC
    LIMIT 10
);
\copy top_cities TO 'top_cities.csv' WITH CSV HEADER DELIMITER ','
DROP VIEW top_cities;

Here's a breakdown for these statements:

CREATE TEMP VIEW top_cities AS (…) indicates that we are creating a new view. 
A view is similar to a table, except that the data is not created. Instead, every 
time the view is referenced, the underlying query is executed. The TEMP keyword 
indicates that the view can be removed automatically at the end of the session.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson07
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson07


The COPY Command | 151

SELECT city, count(1) AS number_of_customers … is a query that gives us the 
number of customers for each city. Because we add the LIMIT 10 statement, 
we only grab the top 10 cities, as ordered by the second column (number of 
customers). We also filter out customers without a city filled in.

\copy … copies data from this view to the top_cities.csv file on our local 
computer.

DROP VIEW top_cities; deletes the view because we no longer need it.

If you open the top_cities.csv text file, you should see output that looks like this:

Figure 6.4: Output from the \copy command

Note

Here, the output file is top_cities.csv. We will be using this file in the exercises to 
come in this chapter.

Now that we have the output from our database in a CSV file format, we can open 
it with a spreadsheet program, such as Excel.
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4.	 Using Microsoft Excel or your favorite spreadsheet software or text editor, open 
the top_cities.csv file: 

Figure 6.5: top_cities.csv open in Excel

5.	 Next, select the data from cell A1 to cell B11.

Figure 6.6: Select the entire dataset by clicking and dragging from A1 to B11
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6.	 Next, in the top menu, go to Insert and then click on the bar chart icon ( ) to 
create a 2-D Column chart:

Figure 6.7: Insert a bar chart to visualize the selected data

7.	 Finally, you should end up with output like this: 

Figure 6.8: Final output from our visualization
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We can see from this chart that Washington D.C. seems to have a very high 
number of customers. Based on this simple analysis, Washington D.C. would 
probably be the obvious next target for ZoomZoom expansion!

Using R with Our Database
At this point, you can now copy data to and from a database. This gives you the freedom 
to expand beyond SQL to other data analytics tools and incorporate any program that 
can read a CSV file as input into your pipeline. While just about every analytics tool 
that you would need can read a CSV file, there's still the extra step needed in which 
you download the data. Adding more steps to your analytics pipeline can make your 
workflow more complex. Complexity can be undesirable, both because it necessitates 
additional maintenance, and because it increases the number of failure points. 

Another approach is to connect to your database directly in your analytics code. In this 
part of the chapter, we are going to look at how to do this in R, a programming language 
designed specifically for statistical computing. Later in the chapter, we will look at 
integrating our data pipelines with Python as well.

Why Use R?

While we have managed to perform aggregate-level descriptive statistics on our data 
using pure SQL, R allows us to perform other statistical analysis, including machine 
learning, regression analysis, and significance testing. R also allows us to create data 
visualizations that make trends clear and easier to interpret. R has arguably more 
statistical functionality than just about any other analytics software available.

Getting Started with R

Because R is an open source language with support for Windows, macOS X, and Linux, 
it is very easy to get started. Here are the steps to quickly set up your R environment:

1.	 Download the latest version of R from https://cran.r-project.org/.

2.	 Once you have installed R, you can download and install RStudio, an Integrated 
Development Environment (IDE) for R programming, from http://rstudio.org/
download/desktop.

https://cran.r-project.org/
http://rstudio.org/download/desktop
http://rstudio.org/download/desktop
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3.	 Next, we are going to install the RPostgreSQL package in R. We can do this in 
RStudio by navigating to the Packages tab and clicking the Install icon:

Figure 6.9: Install R packages in RStudio in the Packages pane

4.	 Next, we will search for the RPostgreSQL package in the Install Packages window 
and install the package:

Figure 6.10: The Install Packages prompt in RStudio allows us to search for a package
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5.	 Next, we can use the RPostgreSQL package to load some data into R. You can use 
the following commands:

library(RPostgreSQL)
con <- dbConnect(PostgreSQL(), host="my_host", user="my_username", 
password="my password", dbname="zoomzoom", port=5432)
result <- dbGetQuery(con, "select * from customers limit 10;")
result

Figure 6.11: Output from our database connection in R

Here is a breakdown of these commands:

library(RPostgreSQL) is the syntax for loading a library in R. 

con <- dbConnect(PostgreSQL(), host="my_host", user="my_username ", 
password="my_password", dbname="zoomzoom", port=5432) establishes the 
connection to the database. All of the database parameters are entered here, so 
you should replace the parameters as needed for your setup. If you have set up a 
.pgpass file, you can leave out the password parameter. 

result <- dbGetQuery(con, "select * from customers limit 10;") is where we 
run a simple query to test our connection and check the result. The data is then 
stored in the result variable as an R dataframe.

In the last line, result is simply the name of the variable that stores our 
DataFrame, and the R terminal will print the contents of a variable or expression if 
there is no assignment.
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At this point, we have successfully exported data from our database into R. This will 
lay the foundation for just about any analysis that you might want to perform. After 
you have loaded your data in R, you can continue processing data by researching other 
packages and techniques using other R packages. For example, dplyr can be used for 
data manipulation and transformation, and the ggplot2 package can be used for data 
visualization.

Using Python with Our Database
While R has a breadth of functionality, many data scientists and data analysts are 
starting to use Python. Why? Because Python offers a similarly high-level language 
that can be easily used to process data. While the number of statistical packages and 
functionality in R can still have an edge on Python, Python is growing fast, and has 
generally overtaken R in most of the recent polls. A lot of the Python functionality 
is also faster than R, in part because so much of it is written in C, a lower-level 
programming language.

The other large advantage that Python has is that it is very versatile. While R is generally 
only used in the research and statistical analysis communities, Python can be used to do 
anything from statistical analysis to standing up a web server. As a result, the developer 
community is much larger for Python. A larger development community is a big 
advantage because there is better community support (for example, on StackOverflow), 
and there are more Python packages and modules being developed every day. The last 
major benefit of Python is that, because it is a general programming language, it can be 
easier to deploy Python code to a production environment, and certain controls (such 
as Python namespaces) make Python less susceptible to errors.

As a result of these advantages, it might be preferable to learn Python, unless the 
functionality that you require is only available in R, or if the rest of your team is using R.

Why Use Python?

While SQL can perform aggregate-level descriptive statistics, Python (like R) allows us 
to perform other statistical analysis and data visualizations. On top of these advantages, 
Python can be used to create repeatable pipelines that can be deployed to production, 
and it can also be used to create interactive analytics web servers. Whereas R is a 
specialist programming language, Python is a generalist programming language – a 
jack of all trades. Whatever your analytics requirements are, you can almost always 
complete your task using the tools available in Python.
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Getting Started with Python

While there are many ways to get Python, we are going to start with the Anaconda 
distribution of Python, which comes with a lot of the commonly used analytics packages 
pre-installed.

Exercise 20: Exporting Data from a Database within Python 

1.	 Download and install Anaconda: https://www.anaconda.com/distribution/

2.	 Once it's installed, open Terminal for Mac or cmd for Windows. Type python on 
the command line, and check that you can access the Python interpreter, which 
should look like this:

Figure 6.12: The Python interpreter is now available and ready for input

Note

If you get an error, it may be because you need to specify your Python path. You 
can enter quit() to exit.

3.	 Next, we will want to install the PostgreSQL database client for Python, psycopg2. 
We can download and install this package using the Anaconda package manager, 
conda. You can enter the following command at the command line to install the 
Postgres database client:

conda install psycopg2

We can break down this command as follows:

conda is the command for the conda package manager. 

install specifies that we want to install a new Python package.

https://www.anaconda.com/distribution/
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4.	 Now, we can open the Python interpreter and load in some data from the database

Type python at the command line to open the Python interpreter.

5.	 Next, we can start writing the Python script to load data:

import psycopg2
with psycopg2.connect(host="my_host", user="my_username", password="my_
password", dbname="zoomzoom", port=5432) as conn:
    with conn.cursor() as cur:
        cur.execute("SELECT * FROM customers LIMIT 5")
            records = cur.fetchall()

records

Figure 6.13: Output from our database connection in Python

These commands can be broken down as follows:

First, we import the psycopg2 package using the following command: import 
psycopg2. Next, we set up our connection object using psycopg2.connect(host="my_
host", user="my_username", password="my_password", dbname="zoomzoom", 
port=5432).

All of the database parameters are entered here, so you should replace the 
parameters as required for your setup. If you have set up a .pgpass file, you 
can leave out the password parameter. This is wrapped in with .. as conn in 
Python; the with statement automatically tears down the object (in this case, the 
connection) when the indentation returns. This is particularly useful for database 
connection, where an idle connection could inadvertently consume database 
resources. We can store this connection object in a conn variable using the as 
conn statement.
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Now that we have a connection, we need to create a cursor object, which 
will let us read from the database. conn.cursor() creates the database cursor 
object, which allows us to execute SQL in the database connection, and the with 
statement allows us to automatically tear down the cursor when we no longer 
need it.

cur.execute("SELECT * FROM customers LIMIT 5") sends the query "SELECT * FROM 
customers LIMIT 5" to the database and executes it.

records = cur.fetchall() fetches all of the remaining rows in a query result and 
assigns those rows to the records variable.

Now that we have sent the query to the database and received the records, we can 
reset the indentation level. We can view our result by entering the expression (in 
this case, just the variable name records) and hitting Enter. This output is the five 
customer records that we have collected.

While we were able to connect to the database and read data, there were several steps, 
and the syntax was a little bit more complex than that for some of the other approaches 
we have tried. While psycopg2 can be powerful, it can be helpful to use some of the 
other packages in Python to facilitate interfacing with the database.

Improving Postgres Access in Python with SQLAlchemy and Pandas

While psycopg2 is a powerful database client for accessing Postgres from Python, we can 
simplify the code by using a few other packages, namely, Pandas and SQLAlchemy.

First, we will look at SQLAlchemy, a Python SQL toolkit and object relational mapper 
that maps representations of objects to database tables. In particular, we will be looking 
at the SQLAlchemy database engine and some of the advantages that it offers. This will 
enable us to access our database seamlessly without worrying about connections and 
cursors.

Next, we can look at Pandas – a Python package that can perform data manipulation 
and facilitate data analysis. The pandas package allows us to represent our data table 
structure (called a DataFrame) in memory. Pandas also has high-level APIs that will 
enable us to read data from our database in just a few lines of code:
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Figure 6.14: An object relational mapper maps rows in a database to objects in memory

While both of these packages are powerful, it is worth noting that they still use the 
psycopg2 package in order to connect to the database and execute queries. The big 
advantage that these packages provide is that they abstract some of the complexities of 
connecting to the database. By abstracting these complexities, we can connect to the 
database without worrying that we might forget to close a connection or tear down a 
cursor.

What is SQLAlchemy?

SQLAlchemy is a SQL toolkit. While it offers some great functionality, the key benefit 
that we will focus on here is the SQLAlchemy Engine object.

A SQLAlchemy Engine object contains information about the type of database (in our 
case, PostgreSQL) and a connection pool. The connection pool allows for multiple 
connections to the database that operate simultaneously. The connection pool is also 
beneficial because it does not create a connection until a query is sent to be executed. 
Because these connections are not formed until the query is being executed, the 
Engine object is said to exhibit lazy initialization. The term "lazy" is used to indicate 
that nothing happens (the connection is not formed) until a request is made. This is 
advantageous because it minimizes the time of the connection and reduces the load on 
the database.

Another advantage of the SQLAlchemy Engine is that it automatically commits 
(autocommits) changes to the database due to CREATE TABLE, UPDATE, INSERT, or other 
statements that modify our database.
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In our case, we will want to use it because it provides a robust Engine to access 
databases. If the connection is dropped, a SQLAlchemy Engine can instantiate that 
connection because it has a connection pool. It also provides a nice interface that works 
well with other packages (such as pandas).

Using Python with Jupyter Notebooks

In addition to interactively using Python at the command line, we can use Python in 
a notebook form in our web browser. This is useful for displaying visualizations and 
running exploratory analyses.

In this section, we are going to use Jupyter notebooks that were installed as part of the 
Anaconda installation. At the command line, run the following command:

jupyter notebook 

You should see something like this pop up in your default browser:

Figure 6.15: Jupyter notebook pop-up screen in your browser

Next, we will create a new notebook: 

Figure 6.16: Opening a new Python 3 Jupyter notebook

At the prompt, enter the following import statements:

from sqlalchemy import create_engine

import pandas as pd
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You'll notice that we are importing two packages here – the first is the create_engine 
module within the sqlalchemy package, and the second is pandas, which we rename to 
pd because this is the standard convention (and it is fewer characters). Using these two 
packages, we will be able to read and write data to and from our database and visualize 
the output.

Hit Shift+Enter to run these commands. A new active cell should pop up:

Figure 6.17: Running our first cell in the Jupyter notebook

Next, we will configure our notebook to display plots and visualizations inline. We can 
do this with the following command:

% matplotlib inline

This tells the matplotlib package (which is a dependency of pandas) to create plots and 
visualizations inline in our notebook. Hit Shift + Enter again to jump to the next cell.

In this cell, we will define our connection string:

cnxn_string = ("postgresql+psycopg2://{username}:{pswd}"

               "@{host}:{port}/{database}")

print(cnxn_string)

Press Shift + Enter again, and you should now see our connection string printed. Next, 
we need to fill in our parameters and create the database Engine. You can replace the 
strings starting with your_ with the parameters specific to your connection:

engine = create_engine(cnxn_string.format(

    username="your_username", 

    pswd="your_password", 

    host="your_host", 

    port=5432,

    database="your_database_name"))    



164 | Importing and Exporting Data

In this command, we run create_engine to create our database Engine object. We pass in 
our connection string and we format it for our specific database connection by filling in 
the placeholders for {username}, {pswd}, {host}, {port}, and {database}.

Because SQLAlchemy is lazy, we will not know whether our database connection was 
successful until we try to send a command. We can test whether this database Engine 
works by running the following command and hitting Shift + Enter:

engine.execute("SELECT * FROM customers LIMIT 2;").fetchall()

We should see something like this:

Figure 6.18: Executing a query within Python

The output of this command is a Python list containing rows from our database in 
tuples. While we have successfully read data from our database, we will probably find it 
more practical to read our data into a Pandas DataFrame in the next section.

Reading and Writing to our Database with Pandas

Python comes with great data structures, including lists, dictionaries, and tuples. While 
these are useful, our data can often be represented in a table form, with rows and 
columns, similar to how we would store data in our database. For these purposes, the 
DataFrame object in Pandas can be particularly useful. 

In addition to providing powerful data structures, Pandas also offers:

•	 Functionality to read data in directly from a database

•	 Data visualization

•	 Data analysis tools

If we continue from where we left off with our Jupyter notebook, we can use the 
SQLAlchemy Engine object to read data into a Pandas DataFrame:

customers_data = pd.read_sql_table('customers', engine)

We have now stored our entire customers table as a Pandas DataFrame in the customers_
data variable. The Pandas read_sql_table function requires two parameters: the 
name of a table and the connectable database (in this case, the SQLAlchemy Engine). 
Alternatively, we can use the read_sql_query function, which takes a query string 
instead of a table name. 
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Here's an example of what your notebook might look like at this point:

Figure 6.19: The entirety of our Jupyter notebook

Performing Data Visualization with Pandas

Now that we know how to read data from the database, we can start to do some basic 
analysis and visualization.

Exercise 21: Reading Data and Visualizing Data in Python

In this exercise, we will be reading data from the database output and visualizing the 
results using Python, Jupyter notebooks, SQLAlchemy, and Pandas. We will be analyzing 
the demographic information of customers by city to better understand our target 
audience.

1.	 Open the Jupyter notebook from the previous section and click on the last empty 
cell.

2.	 Enter the following query surrounded by triple quotes (triple quotes allow for 
strings that span multiple lines in Python):

query = """
    SELECT city,
           COUNT(1) AS number_of_customers,
           COUNT(NULLIF(gender, 'M')) AS female,
           COUNT(NULLIF(gender, 'F')) AS male
    FROM customers
    WHERE city IS NOT NULL
    GROUP BY 1
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    ORDER BY 2 DESC
    LIMIT 10
"""

For each city, this query calculates the count of customers, and calculates the 
count for each gender. It also removes customers with missing city information 
and aggregates our customer data by the first column (the city). In addition, it 
sorts the data by the second column (the count of customers) from largest to 
smallest (descending). Then, it limits the output to the top 10 (the 10 cities with the 
highest number of customers).

3.	 Read the query result into a Pandas DataFrame with the following command and 
execute the cells using Shift + Enter:

top_cities_data = pd.read_sql_query(query, engine)

4.	 You can view the data in top_cities_data by entering it in a new cell and simply 
hitting Shift + Enter. Just as with the Python interpreter, entering a variable or 
expression will display the value. You will notice that Pandas also numbers the 
rows by default – in Pandas, this is called an index. 

Figure 6.20: storing the result of a query as a pandas dataframe
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5.	 Now, we will plot the number of men and women in each of the top 10 cities. 
Because we want to view the stats for each city separately, we can use a simple bar 
plot to view the data:

ax = top_cities_data.plot.bar('city', y=['female', 'male'], title='Number 
of Customers by Gender and City')

Here is a screenshot of what our resulting output notebook should look like:

Figure 6.21: Data visualization in the Jupyter notebook

The results show that there is no significant difference in customer gender for the cities 
that we are considering expanding into.

Writing Data to the Database Using Python

There will also be many scenarios in which we will want to use Python to write data 
back to the database, and, luckily for us, Pandas and SQLAlchemy make this relatively 
easy.

If we have our data in a Pandas DataFrame, we can write data back to the database 
using the Pandas to_sql(…) function, which requires two parameters: the name of the 
table to write to and the connection. Best of all, the to_sql(…) function also creates the 
target table for us by inferring column types using a DataFrame's data types.
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We can test out this functionality using the top_cities_data DataFrame that we created 
earlier. Let's use the following to_sql(…) command in our existing Jupyter notebook:

top_cities_data.to_sql('top_cities_data', engine, 

                       index=False, if_exists='replace')

In addition to the two required parameters, we added two optional parameters to this 
function – the index parameter specifies whether we want the index to be a column in 
our database table as well (a value of False means that we will not include it), and the 
if_exists parameter allows us to specify how to handle a scenario in which there is 
already a table with data in the database. In this case, we want to drop that table and 
replace it with the new data, so we use the 'replace' option. In general, you should 
exercise caution when using the 'replace' option as you can inadvertently lose your 
existing data.

Now, we can query this data from any database client, including psql. Here is the result 
when we try to query this new table in our database:

Figure 6.22: Data created in Python that has now been imported into our database 

Improving Python Write Speed with COPY

While this functionality is simple and works as intended, it is using insert statements to 
send data to the database. For a small table of 10 rows, this is OK, but for larger tables, 
the psql \copy command is going to be much faster. 

We can actually use the COPY command in conjunction with Python, SQLAlchemy, and 
Pandas to deliver the same speed that we get with \copy. Say we define the following 
function:

import csv

from io import StringIO

def psql_insert_copy(table, conn, keys, data_iter):

    # gets a DBAPI connection that can provide a cursor
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    dbapi_conn = conn.connection

    with dbapi_conn.cursor() as cur:

        s_buf = StringIO()

        writer = csv.writer(s_buf)

        writer.writerows(data_iter)

        s_buf.seek(0)

        columns = ', '.join('"{}"'.format(k) for k in keys)

        if table.schema:

            table_name = '{}.{}'.format(table.schema, table.name)

        else:

            table_name = table.name

        sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(

            table_name, columns)

        cur.copy_expert(sql=sql, file=s_buf)

We can then leverage the method parameter in to_sql, as shown here:

top_cities_data.to_sql('top_cities_data', engine, 

                       index=False, if_exists='replace',

                       method=psql_insert_copy)

The psql_insert_copy function defined here can be used without modification in any of 
your PostgreSQL imports from Pandas. Here is a breakdown of what this code does:

1.	 After performing some necessary imports, we begin by defining the function 
using the def keyword followed by the function name (psql_insert_copy) and the 
parameters (table, conn, keys, and data_iter).

2.	 Next, we establish a connection (dbapi_conn) and cursor (cur) that we can use for 
execution.

3.	 Next, we write all of the data in our rows (represented in data_iter) to a string 
buffer (s_buf) that is formatted like a CSV file, but that exists in memory and not in 
a file on our hard drive.
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4.	 Then, we define the column names (columns) and table name (table_name).

5.	 Lastly, we execute the COPY statement by streaming the CSV file contents through 
Standard input (STDIN).

Reading and Writing CSV Files with Python

In addition to reading and writing data to our database, we can use Python to read and 
write data from our local filesystem. The commands for reading and writing CSV files 
with Pandas are very similar to those used for reading and writing from our database:

For writing, pandas.DataFrame.to_csv(file_path, index=False) would write the 
DataFrame to your local filesystem using the supplied file_path.

For reading, pandas.read_csv(file_path, dtype={}) would return a DataFrame 
representation of the data supplied in the CSV file located at file_path.

When reading a CSV file, Pandas will infer the correct data type based on the values 
in the file. For example, if the column contains only integer numbers, it will create the 
column with an int64 data type. 

Similarly, it can infer whether a column contains floats, timestamps, or strings. 
Pandas can also infer whether or not there is a header for the file, and generally, this 
functionality works pretty well. If there is a column that is not read in correctly (for 
example, a five-digit US zip code might get read in as an integer causing leading zeros 
to fall off – "07123" would become 7123 without leading zeros), you can specify the 
column type directly using the dtype parameter. For example, if you have a zip_code 
column in your dataset, you could specify that it is a string using dtype={'zip_code': 
str}.

Note

There are many different ways in which a CSV file might be formatted. While 
pandas can generally infer the correct header and data types, there are many 
parameters offered to customize the reading and writing of a CSV file for your 
needs.

Using the top_cities_data in our notebook, we can test out this functionality:

top_cities_data.to_csv('top_cities_analysis.csv', index=False)

my_data = pd.read_csv('top_cities_analysis.csv')

my_data
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my_data now contains the data that we wrote to a CSV and then read it back in. We do 
not need to specify the optional dtype parameter in this case because our columns 
could be inferred correctly using pandas. You should see an identical copy of the data 
that is in top_cities_data:

Figure 6.23: Checking that we can write and read CSV files in pandas

Best Practices for Importing and Exporting Data
At this point, we have seen several different methods for reading and writing data 
between our computer and our database. Each method has its own use case and 
purpose. Generally, there are going to be two key factors that should guide your 
decision-making process:

•	 You should try to access the database with the same tool that you will use to 
analyze the data. As you add more steps to get your data from the database to your 
analytics tool, you increase the ways in which new errors can arise. When you 
can't access the database using the same tool that you will use to process the data, 
you should use psql to read and write CSV files to your database.

•	 When writing data, you can save time by using the COPY or \copy commands.

Going Password-Less

In addition to everything mentioned so far, it is also a good idea to set up a .pgpass 
file. A .pgpass file specifies the parameters that you use to connect to your database, 
including your password. All of the programmatic methods of accessing the database 
discussed in this chapter (using psql, R, and Python) will allow you to skip the password 
parameter if your .pgpass file contains the password for the matching hostname, 
database, and username.

On Unix-based systems and macOS X, you can create the .pgpass file in your home 
directory. On Windows, you can create the file in %APPDATA%\postgresql\pgpass.conf. 
The file should contain one line for every database connection that you want to store, 
and it should follow this format (customized for your database parameters):

hostname:port:database:username:password
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For Unix and Mac users, you will need to change the permissions on the file using the 
following command on the command line (in the Terminal):

chmod 0600 ~/.pgpass

For Windows users, it is assumed that you have secured the permissions of the file so 
that other users cannot access it. Once you have created the file, you can test that it 
works by calling psql as follows in the terminal:

psql -h my_host -p 5432 -d my_database -U my_username

If the .pgpass file was created successfully, you will not be prompted for your password.

Activity 8: Using an External Dataset to Discover Sales Trends

In this activity, we are going to use United States Census data on public transportation 
usage by zip code to see whether the level of use of public transport has any correlation 
to ZoomZoom sales in a given location.

1.	 Download the public transportation according to zip code dataset from GitHub:

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/
Datasets/public_transportation_statistics_by_zip_code.csv

This dataset contains three columns:

zip_code: This is the five-digit United States postal code that is used to identify 
the region.

public_transportation_pct: This is the percentage of the population in a postal 
code that has been identified as using public transportation to commute to work.

public_transportation_population: This is the raw number of people in a zip 
code that use public transportation to commute to work.

2.	 Copy the data from the public transportation dataset to the ZoomZoom customer 
database by creating a table for it in the ZoomZoom dataset.

3.	 Find the maximum and minimum percentages in this data. Values below 0 will 
most likely indicate missing data. 

4.	 Calculate the average sales amounts for customers that live in high public 
transportation regions (over 10%) as well as low public transportation usage (less 
than, or equal to, 10%).

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Datasets/public_transportation_statistics_by_zip_code.csv
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5.	 Read the data into pandas and plot a histogram of the distribution (hint: you can 
use my_data.plot.hist(y='public_transportation_pct') to plot a histogram if you 
read the data into a my_data pandas DataFrame).

6.	 Using pandas, test using the to_sql function with and without the method=psql_
insert_copy parameter. How do the speeds compare? (Hint: In a Jupyter notebook, 
you can add %time in front of your command to see how long it takes.)

7.	 Group customers based on their zip code public transportation usage, rounded 
to the nearest 10%, and look at the average number of transactions per customer. 
Export this data to Excel and create a scatterplot to better understand the 
relationship between public transportation usage and sales.

8.	 Based on this analysis, what recommendations would you have for the executive 
team at ZoomZoom when considering expansion opportunities?

Note

The solution to this activity can be found on page 328.

Summary
In this chapter, we learned how to interface our database with other analytical tools for 
further analysis and visualization. While SQL is powerful, there are always going to be 
some analyses that need to be undertaken in other systems and being able to transfer 
data in and out of the database enables us to do just about anything we want with our 
data. 

In the next chapter, we will examine data structures that can be used to store complex 
relationships in our data. We will learn how to mine insights from text data, as well 
as look at the JSON and ARRAY data types so that we can make full use of all of the 
information available to us.





Learning Objectives

By the end of this chapter, you will be able to:

•	 Perform descriptive analytics on time series data using DATETIME

•	 Use geospatial data to identify relationships

•	 Use complex data types (arrays, JSON, and JSONB)

•	 Perform text analytics

This chapter covers how to make the most of your data by analyzing complex and alternative 
data types.

Analytics Using 
Complex Data Types

7
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Introduction
In the previous chapter, we looked at how we can import and export data into other 
analytical tools in order to leverage analytical tools outside of our database. It is often 
easiest to analyze numbers, but in the real world, data is frequently found in other 
formats: words, locations, dates, and sometimes complex data structures. In this 
chapter, we will look at these other formats, and see how we can use this data in our 
analysis.

First, we will look at two commonly found column types: datetime columns and latitude 
and longitude columns. These data types will give us a foundational understanding of 
how to understand our data from both a temporal and a geospatial perspective. Next, 
we will look at complex data types, such as arrays and JSON, and learn how to extract 
data points from these complex data types. These data structures are often used for 
alternative data, or log-level data, such as website logs. Finally, we will look at how we 
can extract meaning out of text in our database and use text data to extract insights.

By the end of the chapter, you will have broadened your analysis capabilities so that you 
can leverage just about any type of data available to you.

Date and Time Data Types for Analysis
We are all familiar with dates and times, but we don't often think about how these 
quantitative measures are represented. Yes, they are represented using numbers, but 
not with a single number. Instead, they are measured with a set of numbers, one for 
the year, one for the month, one for the day of the month, one for the hour, one for the 
minute, and so on.

What we might not realize, though, is that this is a complex representation, comprising 
several different components. For example, knowing the current minute without 
knowing the current hour is useless. Additionally, there are complex ways of interacting 
with dates and times, for example, different points in time can be subtracted from one 
another. Additionally, the current time can be represented differently depending on 
where you are in the world.

As a result of these intricacies, we need to take special care when working with this 
type of data. In fact, Postgres, like most databases, offers special data types that can 
represent these types of values. We'll start by examining the date type.
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Starting with the Date Type

Dates can be easily represented using strings, for example, "January 1, 2000," which 
clearly represents a specific date, but dates are a special form of text in that they 
represent a quantitative and sequential value. You can add a week to the current date, 
for example. A given date has many different properties that you might want to use in 
your analysis, for instance, the year or the day of the week that the date represents. 
Working with dates is also necessary for time series analysis, which is one of the most 
common types of analysis that come up.

The SQL standard includes a DATE data type, and PostgreSQL offers great functionality 
for interacting with this data type. First, we can set our database to display dates in 
the format that we are most familiar with. PostgreSQL uses the DateStyle parameter 
to configure these settings. To see your current settings, you can use the following 
command:

SHOW DateStyle;

The following is the output of the preceding query:

Figure 7.1: Displaying the current DateStyle configuration

The first parameter specifies the International Organization Standardization (ISO) 
output format, which displays the date as Year, Month, Day and the second parameter 
specifies the ordering (for example, Month, Day, Year versus Day, Month, Year) for 
input or output. You can configure the output for your database using the following 
command:

SET DateStyle='ISO, MDY';

For example, if you wanted to set it to the European format of Day, Month, Year, you 
would set DateStyle to 'GERMAN, DMY'. For this chapter, we will use the ISO display 
format (Year, Month, Day) and the Month, Day, Year input format. You can configure this 
format by using the preceding command. 



178 | Analytics Using Complex Data Types

Let's start by testing out the date format:

# SELECT '1/8/1999'::DATE;

    date    

------------

 1999-01-08

(1 row)

As we can see, when we input a string, '1/8/1999', using the Month, Day, Year format, 
Postgres understands that this is January 8, 1999 (and not August 1, 1999). It displays the 
date using the ISO format specified previously, in the form YYYY-MM-DD.

Similarly, we could use the following formats with dashes and periods to separate the 
date components: 

# SELECT '1-8-1999'::DATE;

    date    
------------
 1999-01-08
(1 row)

# SELECT '1.8.1999'::DATE;

    date    
------------
 1999-01-08
(1 row)

In addition to displaying dates that are input as strings, we can display the current date 
very simply using the current_date keywords in Postgres:

# SELECT current_date;

 current_date 

--------------

 2019-04-28

(1 row)
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In addition to the DATE data type, the SQL standard offers a TIMESTAMP data type. A 
timestamp represents a date and a time, down to a microsecond.

We can see the current timestamp using the now() function, and we can specify our 
time zone using AT TIME ZONE 'UTC'. Here's an example of the now() function with the 
Eastern Standard time zone specified:

# SELECT now() AT TIME ZONE 'EST';

          timezone          

----------------------------

 2019-04-28 13:47:44.472096

(1 row)

We can also use the timestamp data type without time zone specified. You can grab the 
current time zone with the now() function: 

# SELECT now();

              now              

-------------------------------

 2019-04-28 19:16:31.670096+00

(1 row)

Note

In general, it is recommended that you use a timestamp with the time zone 
specified. If you do not specify the time zone, the value of the timestamp could 
be questionable (for example, the time could be represented in the time zone 
where the company is located, in Universal Time Coordinated (UTC) time, or the 
customer's time zone).

The date and timestamp data types are helpful not only because they display dates 
in a readable format, but also because they store these values using fewer bytes than 
the equivalent string representation (a date type value requires only 4 bytes, while the 
equivalent text representation might be 8 bytes for an 8-character representation such 
as '20160101'). Additionally, Postgres provides special functionality to manipulate and 
transform dates, and this is particularly useful for data analytics.
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Transforming Date Types

Often, we will want to decompose our dates into their component parts. For example, 
we may be interested in only the year and month, but not the day, for the monthly 
analysis of our data. To do this, we can use EXTRACT(component FROM date). Here's an 
example:

# SELECT current_date,

    EXTRACT(year FROM current_date) AS year,

    EXTRACT(month FROM current_date) AS month,

    EXTRACT(day FROM current_date) AS day;

 current_date | year | month | day 

--------------+------+-------+-----

 2019-04-28   | 2019 |     4 |  28 

(1 row)

Similarly, we can abbreviate these components as y, mon, and d, and Postgres will 
understand what we want:

# SELECT current_date,

    EXTRACT(y FROM current_date) AS year,

    EXTRACT(mon FROM current_date) AS month,

    EXTRACT(d FROM current_date) AS day;

 current_date | year | month | day 

--------------+------+-------+-----

 2019-04-28   | 2019 |     4 |  28 

(1 row)
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In addition to the year, month, and day, we will sometimes want additional components, 
such as day of the week, week of the year, or quarter. You can also extract these date 
parts as follows:

# SELECT current_date,

    EXTRACT(dow FROM current_date) AS day_of_week,

    EXTRACT(week FROM current_date) AS week_of_year,

    EXTRACT(quarter FROM current_date) AS quarter;

 current_date | day_of_week | week | quarter 

--------------+-------------+------+---------

 2019-04-28   |           0 |   17 |       2

(1 row)

Note that EXTRACT always outputs a number, so in this case, day_of_week starts at 0 
(Sunday) and goes up to 6 (Saturday). Instead of dow, you can use isodow, which starts at 
1 (Monday) and goes up to 7 (Sunday).

In addition to extracting date parts from a date, we may want to simply truncate our 
date or timestamp. For example, we may want to simply truncate our date to the year 
and month. We can do this using the DATE_TRUNC() function:

[datalake] # SELECT NOW(), DATE_TRUNC('month', NOW());

              now              |       date_trunc       

-------------------------------+------------------------

 2019-04-28 19:40:08.691618+00 | 2019-04-01 00:00:00+00

(1 row)

Notice that the DATE_TRUNC (...) function does not round off the value. Instead, it 
outputs the greatest rounded value less than or equal to the date value that you input. 

Note

The DATE_TRUNC(…) function is similar to the flooring function in mathematics, 
which outputs the greatest integer less than or equal to the input (for example, 5.7 
would be floored to 5).
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The DATE_TRUNC (...) function is particularly useful for GROUP BY statements. For 
example, you can use it to group sales by quarter, and get the total quarterly sales:

SELECT DATE_TRUNC('quarter', NOW()) AS quarter,

    SUM(sales_amount) AS total_quarterly_sales

FROM sales

GROUP BY 1

ORDER BY 1 DESC;

Note

DATE_TRUNC(…) requires a string representing the field you want to truncate to, 
while EXTRACT(…) accepts either the string representation (with quotes) or the field 
name (without quotes). 

Intervals

In addition to representing dates, we can also represent fixed time intervals using the 
interval data type. This is useful if we want to analyze how long something takes, for 
example, if we want to know how long it takes a customer to make a purchase. 

Here's an example:

# SELECT INTERVAL '5 days';

 interval 

----------

 5 days

(1 row)

Intervals are useful for subtracting timestamps, for example:

# SELECT TIMESTAMP '2016-03-01 00:00:00' - TIMESTAMP '2016-02-01 00:00:00' 
AS days_in_feb;

 days_in_feb 

-------------

 29 days

(1 row)
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Or, alternatively, intervals can be used to add the number of days to a timestamp:

# SELECT TIMESTAMP '2016-03-01 00:00:00' + INTERVAL '7 days' AS new_date;

      new_date       

---------------------

 2016-03-08 00:00:00

(1 row)

While intervals offer a precise method for doing timestamp arithmetic, the DATE format 
can be used with integers to accomplish a similar result. In the following example, we 
simply add 7 (an integer) to the date to calculate the new date:

# SELECT DATE '2016-03-01' + 7 AS new_date;

  new_date  

------------

 2016-03-08

(1 row)

Similarly, we can subtract two dates and get an integer result:

# SELECT DATE '2016-03-01' - DATE '2016-02-01' AS days_in_feb;

days_in_feb 

-------------

          29

(1 row)

While the date data type offers ease of use, the timestamp with the time zone data type 
offers precision. If you need your date/time field to be precisely the same as the time 
at which the action occurred, you should use the timestamp with the time zone. If not, 
you can use the date field.
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Exercise 22: Analytics with Time Series Data

In this exercise, we will perform basic analysis using time series data to derive insights 
into how ZoomZoom has ramped up its efforts to sell more vehicles during the year 
2018 by using the ZoomZoom database.

Note

All the exercises and activity codes of this chapter can also be found on GitHub: 
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson07.

Perform the following steps to complete the exercise:

1.	 First, let's look at the number of monthly sales. We can use the following aggregate 
query using the DATE_TRUNC method:

SELECT 
    DATE_TRUNC('month', sales_transaction_date)
        AS month_date,
    COUNT(1) AS number_of_sales
FROM sales
WHERE EXTRACT(year FROM sales_transaction_date) = 2018
GROUP BY 1
ORDER BY 1;

After running this SQL, we get the following result:

Figure 7.2: Monthly number of sales

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson07
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2.	 Next, we can look at how this compares with the number of new customers joining 
each month:

SELECT 
    DATE_TRUNC('month', date_added)
        AS month_date,
    COUNT(1) AS number_of_new_customers
FROM customers
WHERE EXTRACT(year FROM date_added) = 2018
GROUP BY 1
ORDER BY 1;

The following is the output of the preceding query:

Figure 7.3: Number of new customer sign-ups every month

We can probably deduce that customers are not being entered into our database 
during their purchase, but instead, they are signing up with us before they make 
a purchase. The flow of new potential customers is fairly steady, and hovers 
around 400-500 new customer sign-ups every month, while the number of sales 
(as queried in step 1) varies considerably – in July, we have 2.3 times as many sales 
(1,119) as we have new customers (478).

From this exercise, we can see that we get a steady number of customers entering our 
database, but sales transactions vary considerably from month to month. 
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Performing Geospatial Analysis in Postgres
In addition to looking at time series data to better understand trends, we can also use 
geospatial information – such as city, country, or latitude and longitude – to better 
understand our customers. For example, governments use geospatial analysis to better 
understand regional economic differences, while a ride-sharing platform might use 
geospatial data to find the closest driver for a given customer.

We can represent a geospatial location using latitude and longitude coordinates, and 
this will be the fundamental building block for us to begin geospatial analysis.

Latitude and Longitude

When we think about locations, we often think about it in terms of the address – the 
city, state, country, or postal code that is assigned to the location that we are interested 
in. From an analytics perspective, this is sometimes OK – for example, you can look at 
the sales volume by city and come up with meaningful results about which cities are 
performing well. 

Often, however, we need to understand geospatial relationships numerically, to 
understand the distances between two points, or to understand relationships that vary 
based on where you are on a map. After all, if you live on the border between two cities, 
it's rare that your behavior would suddenly change if you move to the other city.

Latitude and longitude allow us to look at the location in a continuous context. This 
allows us to analyze the numeric relationships between location and other factors (for 
example, sales). latitude and longitude also enable us to look at the distances between 
two locations.

Latitude tells us how far north or south a point is. A point at +90° latitude is at the 
North Pole, while a point at 0° latitude is at the equator, and a point at -90° is at the 
South Pole. On a map, lines of constant latitude run east and west.

Longitude tells us how far east, or west, a point is. On a map, lines of constant latitude 
run east and west. Greenwich, England, is the point of 0° longitude. Points can be 
defined using longitude as west (-) or east (+) of this point, and values range from -180° 
west to +180° east. These values are actually equivalent because they both point to the 
vertical line that runs through the Pacific Ocean, which is halfway around the world 
from Greenwich, England. 
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Representing Latitude and Longitude in Postgres

In Postgres, we can represent latitude and longitude using two floating-point numbers. 
In fact, this is how latitude and longitude are represented in the ZoomZoom customers 
table:

SELECT 

    latitude,

    longitude

FROM customers

LIMIT 10; 

Here is the output of the preceding query:

Figure 7.4: Latitudes and longitudes of ZoomZoom customers

Here, we can see that all of the latitudes are positive because the United States is north 
of the equator. All of the longitudes are negative because the United States is west of 
Greenwich, England. We can also see that some customers do not have latitude and 
longitude values filled in, because their location is unknown.

While these values can give us the exact location of a customer, we cannot do much 
with that information, because distance calculations require trigonometry, and make 
simplifying assumptions about the shape of the Earth.

Thankfully, Postgres has tools to solve this problem. We can calculate distances in 
Postgres by installing these packages:

CREATE EXTENSION cube;

CREATE EXTENSION earthdistance;
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These two extensions only need to be installed once, by running the two preceding 
commands. The earthdistance module depends on the cube module. Once we install the 
earthdistance module, we can define a point:

SELECT 

    point(longitude, latitude)

FROM customers

LIMIT 10; 

Here is the output of the preceding query:

Figure 7.5: Customer latitude and longitude represented as points in Postgres

Note

A point is defined with longitude first and then latitude. This is contrary to the 
convention of latitude first and then longitude. The rationale behind this is that 
longitude more closely represents points along an x-axis, and latitude more closely 
represents points on the y-axis, and in mathematics, graphed points are usually 
noted by their x coordinate followed by their y coordinate.

The earthdistance module also allows us to calculate the distance between points in 
miles:

SELECT 

    point(-90, 38) <@> point(-91, 37) AS distance_in_miles;
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Here is the output of the preceding query:

Figure 7.6: The distance (in miles) between two points separated by 1° longitude and 1° latitude

In this example, we defined two points, (38° N, 90° W) and (37° N, 91° W), and we were 
able to calculate the distance between these points using the <@> operator, which 
calculates the distance in miles (in this case, these two points are 88.2 miles apart).

In the following exercise, we will see how we can use these distance calculations in a 
practical business context.

Exercise 23: Geospatial Analysis

In this exercise, we will identify the closest dealership for each customer. ZoomZoom 
marketers are trying to increase customer engagement by helping customers find 
their nearest dealership. The product team is also interested to know what the average 
distance is between each customer and their closest dealership.

Follow these steps to implement the exercise:

1.	 First, we will create a table with the longitude and latitude points for every 
customer:

CREATE TEMP TABLE customer_points AS (
    SELECT
        customer_id,
        point(longitude, latitude) AS lng_lat_point
    FROM customers
    WHERE longitude IS NOT NULL
    AND latitude IS NOT NULL
);

2.	 Next, we can create a similar table for every dealership:

CREATE TEMP TABLE dealership_points AS (
    SELECT
        dealership_id,
        point(longitude, latitude) AS lng_lat_point
    FROM dealerships
);
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3.	 Now we can cross join these tables to calculate the distance from each customer 
to each dealership (in miles):

CREATE TEMP TABLE customer_dealership_distance AS (
    SELECT
       customer_id,
       dealership_id,
       c.lng_lat_point <@> d.lng_lat_point AS distance 
    FROM customer_points c 
    CROSS JOIN dealership_points d
);

4.	 Finally, we can take the closest dealership for each customer using the following 
query:

CREATE TEMP TABLE closest_dealerships AS (
    SELECT DISTINCT ON (customer_id) 
        customer_id,
        dealership_id, 
        distance 
    FROM customer_dealership_distance 
    ORDER BY customer_id, distance
);

Remember that the DISTINCT ON clause guarantees only one record for each unique 
value of the column in parentheses. In this case, we will get one record for every 
customer_id, and because we sort by distance, we will get the record with the 
shortest distance. 

5.	 Now that we have the data to fulfill the marketing team's request, we can now 
calculate the average distance from each customer to their closest dealership:

SELECT 
    AVG(distance) AS avg_dist,
    PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY distance) AS median_dist
FROM closest_dealerships;

Here is the output of the preceding query:

Figure 7.7: Average and median distances between customers and their closest dealership
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The result is that the average distance is about 147 miles away, but the median 
distance is about 91 miles.

In this exercise, we represented the geographic points for every customer, then 
calculated the distance for each customer and every possible dealership, identified the 
closest dealership for each customer, and found the average and median distances to a 
dealership for our customers.

Using Array Data Types in Postgres
While the Postgres data types that we have explored so far allow us to store many 
different types of data, occasionally we will want to store a series of values in a 
table. For example, we might want to store a list of the products that a customer has 
purchased, or we might want to store a list of the employee ID numbers associated with 
a specific dealership. For this scenario, Postgres offers the ARRAY data type, which allows 
us to store just that – a list of values. 

Starting with Arrays

Postgres arrays allow us to store multiple values in a field in a table. For example, 
consider the following first record in the customers table:

customer_id        | 1

title              | NULL

first_name          | Arlena

last_name          | Riveles

suffix              | NULL

email              | ariveles0@stumbleupon.com

gender             | F

ip_address         | 98.36.172.246

phone              | NULL

street_address     | NULL

city               | NULL

state              | NULL

postal_code        | NULL

latitude           | NULL

longitude          | NULL

date_added         | 2017-04-23 00:00:00
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Each field contains exactly one value (the NULL value is still a value); however, there 
are some attributes that might contain multiple values with an unspecified length. For 
example, imagine that we wanted to have a purchased_products field. This could contain 
zero or more values within the field. For example, imagine the customer purchased the 
Lemon and Bat Limited Edition scooters; we can represent that as follows:

purchased_products | {Lemon,"Bat Limited Edition"}

We can define an array in a variety of ways. To get started, we can simply create an 
array using the following command:

SELECT ARRAY['Lemon', 'Bat Limited Edition'] AS example_purchased_products;

  example_purchased_products   

-------------------------------

 {Lemon,"Bat Limited Edition"}

Postgres knows that the 'Lemon' and 'Bat Limited Edition' values are of the text data 
type, so it creates a text array to store these values. 

While you can create an array for any data type, the array is limited to values for that 
data type only. So, you could not have an integer value followed by a text value (this 
would likely produce an error).

We can also create arrays using the ARRAY_AGG aggregate function. For example, the 
following query aggregates all of the vehicles for each product type:

SELECT product_type, ARRAY_AGG(DISTINCT model) AS models FROM products GROUP 
BY 1;

The following is the output of the preceding query:

Figure 7.8: Output of the ARRAY_AGG function
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You can also reverse this operation using the UNNEST function, which creates one row 
for every value in the array:

SELECT UNNEST(ARRAY[123, 456, 789]) AS example_ids;

Here is the output of the preceding query:

Figure 7.9: Output of the UNNEST command

You can also create an array by splitting a string value using the STRING_TO_ARRAY 
function. Here's an example:

SELECT STRING_TO_ARRAY('hello there how are you?', ' ');

In this example, the sentence is split using the second string (' '), and we end up with 
the result:

Figure 7.10: A string value is split into an array of strings

Similarly, we can run the reverse operation, and concatenate an array of strings into a 
single string:

SELECT ARRAY_TO_STRING(ARRAY['Lemon', 'Bat Limited Edition'], ', ')  AS 
example_purchased_products;

In this example, we can join the individual string with the second string using ', ':

Figure 7.11: A new string is formed from an array of strings
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There are other functions that allow you to interact with arrays. Here are a few 
examples of the additional array functionality that Postgres provides:

Figure 7.12: Examples of additional array functionality

Using JSON Data Types in Postgres
While arrays can be useful for storing a list of values in a single field, sometimes our 
data structures can be complex. For example, we might want to store multiple values 
of different types in a single field, and we might want data to be keyed with labels 
rather than stored sequentially. These are common issues with log-level data, as well as 
alternative data.

JavaScript Object Notation (JSON) is an open standard text format for storing data of 
varying complexity. It can be used to represent just about anything. Similar to how a 
database table has column names, JSON data has keys. We can represent a record from 
our customers database easily using JSON, by storing column names as keys, and row 
values as values. The row_to_json function transforms rows to JSON:

SELECT row_to_json(c) FROM customers c limit 1;

Here is the output of the preceding query:

{"customer_id":1,"title":null,"first_name":"Arlena","last_
name":"Riveles","suffix":null,"email":"ariveles0@stumbleupon.
com","gender":"F","ip_address":"98.36.172.246","phone":null,"street_
address":null,"city":null,"state":null,"postal_
code":null,"latitude":null,"longitude":null,"date_added":"2017-04-
23T00:00:00"}
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This is a little hard to read, but we can add the pretty_bool flag to the row_to_json 
function to generate a readable version:

SELECT row_to_json(c, TRUE) FROM customers c limit 1;

Here is the output of the preceding query:

Figure 7.13: JSON output from row_to_json

As you can see, once we reformat the JSON, it presents a simple, readable, text 
representation of our row. The JSON structure contains keys and values. In this 
example, the keys are simply the column names, and the values come from the row 
values. JSON values can either be numeric values (either integers or floats), Boolean 
values (true or false), text values (wrapped with double quotation marks), or null. 

JSON can also include nested data structures. For example, we can take a hypothetical 
scenario where we want to include purchased products in the table as well:

{

"customer_id":1,

"example_purchased_products":["Lemon", "Bat Limited Edition"]

}
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Or, we can take this example one step further: 

{                                                          

     "customer_id": 7,                                       

     "sales": [                                             

         {                                                  

             "product_id": 7,                               

             "sales_amount": 599.99,                        

             "sales_transaction_date": "2019-04-25T04:00:30"

         },                                                 

         {                                                  

             "product_id": 1,                               

             "sales_amount": 399.99,                        

             "sales_transaction_date": "2011-08-08T08:55:56"

         },                                                 

         {                                                  

             "product_id": 6,                               

             "sales_amount": 65500,                         

             "sales_transaction_date": "2016-09-04T12:43:12"

         }                                                  

     ],                                                     

}

In this example, we have a JSON object with two keys: customer_id and sales. As you 
can see, the sales key points to a JSON array of values, but each value is another JSON 
object representing the sale. JSON objects that exist within a JSON object are referred 
to as nested JSON. In this case, we have represented all of the sales transactions for a 
customer using a nested array that contains nested JSON objects for each sale.

While JSON is a universal format for storing data, it is inefficient, because everything 
is stored as one large text string. In order to retrieve a value associated with a key, you 
would need to first parse the text, and this has a relatively high computational cost 
associated with it. If you just have a few JSON objects, this performance overhead might 
not be a big deal; however, it might become a burden if, for example, you are trying to 
select the JSON object with "customer_id": 7 from millions of other JSON objects in 
your database.
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In the next section, we will introduce JSONB, a binary JSON format, which is optimized 
for Postgres and allows you to avoid a lot of the parsing overhead associated with a 
standard JSON text string.

JSONB: Pre-Parsed JSON

While a text JSON field needs to be parsed each time it is referenced, a JSONB value is 
pre-parsed, and data is stored in a decomposed binary format. This requires that the 
initial input be parsed up front, and the benefit is that there is a significant performance 
improvement when querying the keys or values in this field. This is because the keys 
and values do not need to be parsed – they have already been extracted and stored in 
an accessible binary format.

Note

JSONB differs from JSON in a few other ways as well. First, you cannot have more 
than one key with the same name. Second, the key order is not preserved. Third, 
semantically insignificant details, such as whitespace, are not preserved.

Accessing Data from a JSON or JSONB Field

JSON keys can be used to access the associated value using the -> operator. Here's an 
example:

SELECT 

    '{

         "a": 1,

         "b": 2,

         "c": 3

     }'::JSON -> 'b' AS data;

In this example, we had a three-key JSON value, and we are trying to access the value 
for the b key. The output is a single output: 2. This is because the -> 'b' operation gets 
the value for the b key from the JSON, {"a": 1, "b": 2, "c": 3}.
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Postgres also allows more complex operations to access nested JSON using the #> 
operator. Take the following example:

SELECT 

    '{

         "a": 1,

         "b": [

             {"d": 4},

             {"d": 6},

             {"d": 4}

    ],

         "c": 3

     }'::JSON #> ARRAY['b', '1', 'd'] AS data;

On the right side of the #> operator, a text array defines the path to access the desired 
value. In this case, we select the 'b' value, which is a list of nested JSON objects. Then, 
we select the element in the list denoted by '1', which is the second element because 
array indexes start at 0. Finally, we select the value associated with the 'd' key – and 
the output is 6.

These functions work with JSON or JSONB fields (keep in mind it will run much faster 
on JSONB fields). JSONB, however, also enables additional functionality. For example, 
let's say you want to filter rows based on a key-value pair. You could use the @> 
operator, which checks whether the JSONB object on the left contains the key value on 
the right. Here's an example:

SELECT * FROM customer_sales WHERE customer_json @> '{"customer_
id":20}'::JSONB;

The preceding query outputs the corresponding JSONB record:

{"email": "ihughillj@nationalgeographic.com", "phone": null, "sales": [], 
"last_name": "Hughill", "date_added": "2012-08-08T00:00:00", "first_name": 
"Itch", "customer_id": 20}

With JSONB, we can also make our output look pretty using the jsonb_pretty function:

SELECT JSONB_PRETTY(customer_json) FROM customer_sales WHERE customer_json 
@> '{"customer_id":20}'::JSONB;
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Here is the output of the preceding query:

Figure 7.14: Output from the JSONB_PRETTY function

We can also select just the keys from the JSONB field, and unnest them into multiple 
rows using the JSONB_OBJECT_KEYS function. Using this function, we can also extract 
the value associated with each key from the original JSONB field using the -> operator. 
Here's an example:

SELECT 

    JSONB_OBJECT_KEYS(customer_json) AS keys,

    customer_json -> JSONB_OBJECT_KEYS(customer_json) AS values

FROM customer_sales 

WHERE customer_json @> '{"customer_id":20}'::JSONB

;

The following is the output of the preceding query:

Figure 7.15: Keys and values pairs exploded into multiple rows  
using the JSONB_OBJECT_KEYS function
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Creating and Modifying Data in a JSONB Field

You can also add and remove elements from JSONB. For example, to add a new 
key-value pair, "c": 2, you can do the following:

select jsonb_insert('{"a":1,"b":"foo"}', ARRAY['c'], '2');

Here is the output of the preceding query:

{"a": 1, "b": "foo", "c": 2}

If you wanted to insert values into a nested JSON object, you could do that too:

select jsonb_insert('{"a":1,"b":"foo", "c":[1, 2, 3, 4]}', ARRAY['c', '1'], 
'10');

This would return the following output:

{"a": 1, "b": "foo", "c": [1, 10, 2, 3, 4]}

In this example, ARRAY['c', '1'] represents the path where the new value should be 
inserted. In this case, it first grabs the 'c'  key and corresponding array value, and then 
it inserts the value ('10') at position '1'. 

To remove a key, you can simply subtract the key that you want to remove. Here's an 
example: 

SELECT '{"a": 1, "b": 2}'::JSONB - 'b';

In this case, we have a JSON object with two keys: a and b. When we subtract b, we are 
left with just the a key and its associated value:

{"a": 1}

In addition to the methodologies described here, we might want to search through 
multiple layers of nested objects. We will learn this in the following exercise.

Exercise 24: Searching through JSONB

We will identify the values using data stored as JSNOB. Suppose we want to identify all 
customers who purchased a Blade scooter; we can do this using data stored as JSNOB.

Complete the exercise by implementing the following steps: 

1.	 First, we need to explode out each sale into its own row. We can do this using the 
JSONB_ARRAY_ELEMENTS function, which does exactly that:

CREATE TEMP TABLE customer_sales_single_sale_json AS (
    SELECT 
        customer_json,
        JSONB_ARRAY_ELEMENTS(customer_json -> 'sales') AS sale_json 
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    FROM customer_sales LIMIT 10
);

2.	 Next, we can simply filter this output, and grab the records where product_name is 
'Blade':

SELECT DISTINCT customer_json FROM customer_sales_single_sale_json WHERE 
sale_json ->> 'product_name' = 'Blade' ;

The ->> operator is similar to the -> operator, except it returns text output rather 
than JSONB output. This outputs the following result:

Figure 7.16: Records where product_name is 'Blade'

3.	 We can make this result easier to read by using JSONB_PRETTY() to format the 
output:

SELECT DISTINCT JSONB_PRETTY(customer_json) FROM customer_sales_single_
sale_json WHERE sale_json ->> 'product_name' = 'Blade' ;

Here is the output of the preceding query:

Figure 7.17: Format the output using JSNOB_PRETTY()

We can now easily read the formatted result after using the JSNOB_PRETTY() 
function.
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In this exercise, we identified the values using data stored as JSNOB. We used JSNOB_
PRETTY() and JSONB_ARRAY_ELEMENTS() to complete this exercise.

Text Analytics Using Postgres
In addition to performing analytics using complex data structures within Postgres, we 
can also make use of the non-numeric data available to us. Often, text contains valuable 
insights – you can imagine a salesperson keeping notes on prospective clients: "Very 
promising interaction, the customer is looking to make a purchase tomorrow" contains 
valuable data, as does this note: "The customer is uninterested. They no longer have a 
need for the product." While this text can be valuable for someone to manually read, it 
can also be valuable in the analysis. Keywords in these statements, such as "promising," 
"purchase," "tomorrow," "uninterested," and "no" can be extracted using the right 
techniques to try to identify top prospects in an automated fashion.

Any block of text can have keywords that can be extracted to uncover trends, for 
example, in customer reviews, email communications, or sales notes. In many 
circumstances, text data might be the most relevant data available, and we need to use 
it in order to create meaningful insights. 

In this chapter, we will look at how we can use some Postgres functionality to extract 
keywords that will help us identify trends. We will also leverage text search capabilities 
in Postgres to enable rapid searching.

Tokenizing Text

While large blocks of text (sentences, paragraphs, and so on) can provide useful 
information to convey to a human reader, there are few analytical solutions that can 
draw insights from unprocessed text. In almost all cases, it is helpful to parse text into 
individual words. Often, the text is broken out into the component tokens, where each 
token is a sequence of characters that are grouped together to form a semantic unit. 
Usually, each token is simply a word in the sentence, although in certain cases (such as 
the word "can't"), your parsing engine might parse two tokens: "can" and "t".

Note

Even cutting-edge Natural Language Processing (NLP) techniques usually 
involve tokenization before the text can be processed. NLP can be useful to run 
analysis that requires a deeper understanding of the text.
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Words and tokens are useful because they can be matched across documents in your 
data. This allows you to draw high-level conclusions at the aggregate level. For example, 
if we have a dataset containing sales notes, and we parse out the "interested" token, we 
can hypothesize that sales notes containing "interested" are associated with customers 
who are more likely to make a purchase.

Postgres has functionality that makes tokenization fairly easy. We can start by using 
the STRING_TO_ARRAY function, which splits a string into an array using a delimiter, for 
example, a space:

SELECT STRING_TO_ARRAY('Danny and Matt are friends.', ' ');

The following is the output of the preceding query:

{Danny,and,Matt,are,friends.}

In this example, the sentence Danny and Matt are friends. is split on the space 
character.

In this example, we have punctuation, which might be better off removed. We can do 
this easily using the REGEXP_REPLACE function. This function accepts four arguments: the 
text you want to modify, the text pattern that you want to replace, the text that should 
replace it, and any additional flags (most commonly, you will add the 'g' flag, specifying 
that the replacement should happen globally, or as many times as the pattern is 
encountered). We can remove the period using a pattern that matches the punctuation 
defined in the \!@#$%^&*()-=_+,.<>/?|[] string and replaces it with space:

SELECT REGEXP_REPLACE('Danny and Matt are friends.', '[!,.?-]', ' ', 'g');

The following is the output of the preceding query:

Danny and Matt are friends

The punctuation has been removed.

Postgres also includes stemming functionality, which is useful for identifying the root 
stem of the token. For example, the tokens "quick" and "quickly" or "run" and "running" 
are not that different in terms of their meaning, and contain the same stem. The ts_
lexize function can help us standardize our text by returning the stem of the word, for 
example:

SELECT TS_LEXIZE('english_stem', 'running');

The preceding code returns the following:

{run}

We can use these techniques to identify tokens in text, as we will see in the following 
exercise.
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Exercise 25: Performing Text Analytics

In this exercise, we want to quantitatively identify keywords that correspond with 
higher-than-average ratings or lower-than-average ratings using text analytics. In 
our ZoomZoom database, we have access to some customer survey feedback, along 
with ratings for how likely the customer is to refer their friends to ZoomZoom. These 
keywords will allow us to identify key strengths and weaknesses for the executive team 
to consider in the future.

Follow these steps to complete the exercise:

1.	 Let's start by seeing what data we have:

SELECT * FROM customer_survey limit 5; 

The following is the output of the preceding query:

Figure 7.18: Example customer survey responses in our database

We can see that we have access to a numeric rating between 1 and 10, and 
feedback in text format. 

2.	 In order to analyze the text, we need to parse it out into individual words and their 
associated ratings. We can do this using some array transformations:

SELECT UNNEST(STRING_TO_ARRAY(feedback, ' ')) AS word, rating FROM 
customer_survey limit 10;

The following is the output of the preceding query:

Figure 7.19: Transformed text output



Text Analytics Using Postgres | 205

As we can see from this output, the tokens are not standardized, and therefore 
this is problematic. In particular, punctuation (for example, It's), capitalization 
(for example, I and It's), word stems, and stop words (for example, I, the, and so) 
can be addressed to make the results more relevant. 

3.	 Standardize the text using the ts_lexize function and using the English stemmer 
'english_stem'. We will then remove characters that are not letters in our original 
text using REGEXP_REPLACE. Pairing these two functions together with our original 
query, we get the following:

SELECT 
    (TS_LEXIZE('english_stem',
               UNNEST(STRING_TO_ARRAY(
                   REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),
                   ' ')
               )))[1] AS token,
    rating
FROM customer_survey 
LIMIT 10;

This returns the following:

Figure 7.20: Output from TS_LEXIZE and REGEX_REPLACE

Note

When we apply these transformations, we call the outputs tokens rather than 
words. Tokens refer to each linguistic unit.
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Now we have the key tokens and their associated ratings available. Note that the 
output of this operation produces NULL values, so we will need to filter out those 
rating pairs.

4.	 In the next step, we will want to find the average rating associated with each 
token. We can actually do this quite simply using a GROUP BY clause:

SELECT                                                                                      
    (TS_LEXIZE('english_stem',
               UNNEST(STRING_TO_ARRAY(
                   REGEXP_REPLACE(feedback, '[^a-zA-Z]+', ' ', 'g'),
                   ' ')
               )))[1] AS token,
    AVG(rating) AS avg_rating
FROM customer_survey 
GROUP BY 1
HAVING COUNT(1) >= 3
ORDER BY 2
;

In this query, we group by the first expression in the SELECT statement where we 
perform the tokenization. We can now take the average rating associated with 
each token. We want to make sure that we only take tokens with more than a 
couple of occurrences so that we can filter out the noise – in this case, due to the 
small sample size of feedback responses, we only require that the token occurs 
three or more times (HAVING COUNT(1) >= 3). Finally, we order the results by the 
second expression – the average score:
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Figure 7.21: Average ratings associated with text tokens

On one end of the spectrum, we see that we have quite a few results that are 
negative: pop probably refers to popping tires, and batteri probably refers to 
issues with battery life. On the positive side, we see that customers respond 
favorably to discount, sale, and dealership. 

5.	 Verify the assumptions by filtering survey responses that contain these tokens 
using an ILIKE expression, as follows:

SELECT * FROM customer_survey WHERE feedback ILIKE '%pop%';

This returns three relevant survey responses:

Figure 7.22: Filtering survey responses using ILIKE
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The ILIKE expression allows us to match text that contains a pattern. In this 
example, we are trying to find text that contains the text pop, and the operation is 
case-insensitive. By wrapping this in % symbols, we are specifying that the text can 
contain any number of characters on the left or right. 

Note

ILIKE is similar to another SQL expression: LIKE. The ILIKE expression is case-
insensitive, and the LIKE expression is case-sensitive, so typically it will make sense 
to use ILIKE. In situations where performance is critical, LIKE might be slightly 
faster.

Upon receiving the results of our analysis, we can report the key issues to our product 
team to review. We can also report the high-level findings that customers like discounts 
and also feedback have been positive following the introduction of dealerships. 

Performing Text Search

While performing text analytics using aggregations, as we did earlier, in some cases, it 
might be helpful instead to query our database for relevant posts, similar to how you 
might query a search engine.

While you can do this using an ILIKE expression in your WHERE clause, this is not terribly 
fast or extensible. For example, what if you wanted to search the text for multiple 
keywords, and what if you want to be robust to misspellings, or scenarios where one of 
the words might be missing altogether?

For these situations, we can use the text search functionality in Postgres. This 
functionality is pretty powerful and scales up to millions of documents when it is fully 
optimized.

Note

"Documents" represent the individual records in a search database. Each 
document represents the entity that we want to search for. For example, for a 
blogging website, this might be a blog article, which might include the title, the 
author, and the article for one blog entry. For a survey, it might include the survey 
responses, or perhaps the survey response combined with the survey question. A 
document can span multiple fields or even multiple tables.
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We can start with the to_tsvector function, which will perform a similar function to 
the ts_lexize function. Rather than produce a token from a word, this will tokenize the 
entire document. Here's an example:

SELECT 

    feedback,

    to_tsvector('english', feedback) AS tsvectorized_feedback

FROM customer_survey

LIMIT 1;

This produces the following result:

Figure 7.23: The tsvector tokenized representation of the original feedback

In this case, the feedback I highly recommend the lemon scooter. It's so fast was 
converted into a tokenized vector: 'fast':10 'high':2 'lemon':5 'recommend':3 
'scooter':6. Similar to the ts_lexize function, less meaningful "stop words" were 
removed such as "I," "the," "It's," and "so." Other words, such as highly were stemmed to 
their root (high). Word order was not preserved.

The to_tsvector function can also take in JSON or JSONB syntax and tokenize the 
values (no keys) as a tsvector object.

The output data type from this operation is a tsvector data type. The tsvector data 
type is specialized and specifically designed for text search operations. In addition to 
tsvector, the tsquery data type is useful for transforming a search query into a useful 
data type that Postgres can use to search. For example, suppose we want to construct a 
search query with the lemon scooter keyword – we can write it as follows:

SELECT to_tsquery('english', 'lemon & scooter');

Or, if we don't want to specify the Boolean syntax, we can write it more simply as 
follows:

SELECT plainto_tsquery('english', 'lemon scooter');
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Both of these produce the same result:

Figure 7.24: Transformed query with Boolean syntax

Note

to_tsquery accepts Boolean syntax, such as & for and and | for or. It also accepts ! 
for not.

You can also use Boolean operators to concatenate tsquery objects. For example, the && 
operator will produce a query that requires the left query and the right query, while the 
|| operator will produce a query that matches either the left or the right tsquery object:

SELECT plainto_tsquery('english', 'lemon') && plainto_tsquery('english', 
'bat') || plainto_tsquery('english', 'chi');

This produces the following result:

'lemon' & 'bat' | 'chi'

We can query a ts_vector object using a ts_query object using the @@ operator. For 
example, we can search all customer feedback for 'lemon scooter':

SELECT *

FROM customer_survey 

WHERE to_tsvector('english', feedback) @@ plainto_tsquery('english', 'lemon 
scooter');

This returns the following three results:

Figure 7.25: Search query output using the Postgres search functionality
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Optimizing Text Search on Postgres

While the Postgres search syntax in the previous example is straightforward, it needs to 
convert all text documents into a tsvector object every time a new search is performed. 
Additionally, the search engine needs to check each and every document to see 
whether they match the query terms.

We can improve this in two ways:

•	 Store the tsvector objects so that they do not need to be recomputed.

•	 We can also store the tokens and their associated documents, similar to how 
an index in the back of a book has words or phrases and their associated page 
numbers so that we don't have to check each document to see whether it matches.

In order to do these two things, we will need to precompute and store the tsvector 
objects for each document and compute a Generalized Inverted Index (GIN).

In order to precompute the tsvector objects, we will use a materialized view. A 
materialized view is defined as a query, but unlike a regular view, where the results are 
queried every time, the results for a materialized view are persisted and stored as a 
table. 

Because a materialized view stores results in a stored table, it can get out of sync with 
the underlying tables that it queries.

We can create a materialized view of our survey results using the following query:

CREATE MATERIALIZED VIEW customer_survey_search AS (

    SELECT 

        rating, 

        feedback,

        to_tsvector('english', feedback) 

            || to_tsvector('english', rating::text) AS searchable

    FROM customer_survey

);

You can see that our searchable column is actually composed of two columns: the 
rating and feedback columns. There are many scenarios where you will want to search 
on multiple fields, and you can easily concatenate multiple tsvector objects together 
with the || operator.
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We can test that the view worked by querying a row:

SELECT * FROM customer_survey_search LIMIT 1;

This produces the following output:

Figure 7.26: A record from our materialized view with tsvector

Whenever we need to refresh the view (for example, after an insert or update), we can 
use the following syntax:

REFRESH MATERIALIZED VIEW CONCURRENTLY customer_survey_search;

This will recompute the view concurrently while the old copy of the view remains 
available and unlocked.

Additionally, we can add the GIN index with the following syntax:

CREATE INDEX idx_customer_survey_search_searchable ON customer_survey_search 
USING GIN(searchable);

With these two operations (creating the materialized view and creating the GIN index), 
we can now easily query our feedback table using search terms:

SELECT rating, feedback FROM customer_survey_search WHERE searchable @@ 
plainto_tsquery('dealership');

The following is the output of the preceding query:

Figure 7.27: Output from the materialized view optimized for search
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While the query time improvement might be small or non-existent for a small table 
of 32 rows, these operations greatly improve the speed for large tables (for example, 
with millions of rows), and enable users to quickly search their database in a matter of 
seconds.

Activity 9: Sales Search and Analysis

The head of sales at ZoomZoom has identified a problem: there is no easy way for the 
sales team to search for a customer. Thankfully, you volunteered to create a proof-of-
concept internal search engine that will make all customers searchable by their contact 
information and the products that they have purchased in the past:

1.	 Using the customer_sales table, create a searchable materialized view with one 
record per customer. This view should be keyed off of the customer_id column 
and searchable on everything related to that customer: name, email, phone, and 
purchased products. It is OK to include other fields as well.

2.	 Create a searchable index on the materialized view that you created.

3.	 A salesperson asks you by the water cooler if you can use your new search 
prototype to find a customer by the name of Danny who purchased the Bat 
scooter. Query your new searchable view using the "Danny Bat" keywords. How 
many rows did you get? 

4.	 The sales team wants to know how common it is for someone to buy a scooter 
and an automobile. Cross join the product table on itself to get all distinct pairs of 
products and remove pairs that are the same (for example, if the product name is 
the same). For each pair, search your view to see how many customers were found 
to match both products in the pair. You can assume that limited-edition releases 
can be grouped together with their standard model counterpart (for example, Bat 
and Bat Limited Edition can be considered the same scooter).
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Expected Output:

Figure 7.28: Customer counts for each scooter and automobile combination

Note

The solution for the activity can be found on page 336.

In this activity, we searched and analyzed the data using the materialized view. Then, 
we used DISTINCT and JOINS to transform the query. Lastly, we learned how to query our 
database using tsquery objects to get the final output.

Summary
In this chapter, we covered special data types including dates, timestamps, latitude and 
longitude, arrays, JSON and JSONB, and text data types. We learned how to transform 
these data types using specialized functionality for each data type, and we learned how 
we can perform advanced analysis using these data types and proved that this can be 
useful in a business context. 

As our datasets grow larger and larger, these complex analyses become slower and 
slower. In the next chapter, we will take a deep look at how we can begin to optimize 
these queries using an explanation and analysis of the query plan, and using additional 
tools, such as indexes, that can speed up our queries.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Optimize database use to allow more queries to be executed with fewer resources

•	 Implement index and sequential scans and understand when to most effectively  
use them

•	 Interpret the output of EXPLAIN ANALYZE

•	 Understand the benefits of using joins in place of other functionality

•	 Identify bottlenecks in queries

•	 Implement triggers in response to specific events

•	 Create and use functions to create more sophisticated and efficient queries

•	 Identify long-running queries and terminate them

In this chapter, we will improve the performance of some of our previous SQL queries. Now 
that we have a good understanding of the basics, we will build upon this foundation by making 
our queries more resource and time efficient. As we begin to work with larger datasets, these 
efficiencies become even more important, with each computational step taking longer to 
compute.

Performant SQL

8
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Introduction
In the previous chapter, we developed the skills necessary to effectively analyze data 
within a SQL database, and in this chapter, we will turn our attention to the efficiency 
of this analysis, investigating how we can increase the performance of our SQL queries. 
Efficiency and performance are key components of data analytics, since without 
considering these factors, physical constraints such as time and processing power can 
significantly affect the outcome of an analysis. To elaborate on these limitations, we can 
consider two separate scenarios.

Let's say that we are performing post-hoc analysis (analysis after the fact or event). 
In this first scenario, we have completed a study and have collected a large dataset of 
individual observations of a variety of different factors or features. One such example is 
that described within our dealership sales database – analyzing the sales data for each 
customer. With the data collection process, we want to analyze the data for patterns 
and insights as specified by our problem statement. If our dataset was sufficiently 
large, we could quickly encounter issues if we didn't optimize the queries first; the 
most common issue would simply be the time taken to execute the queries. While this 
doesn't sound like a significant issue, unnecessarily long processing times can cause:

•	 A reduction in the depth of the completed analysis. As each query takes a long 
time, the practicalities of project schedules may limit the number of queries, and 
so the depth and complexity of the analysis may be limited.

•	 The limiting of the selection of data for analysis. By artificially reducing the dataset 
using sub-sampling, we may be able to complete the analysis in a reasonable time 
but would have to sacrifice the number of observations being used. This may, in 
turn, lead to biases being accidentally included in the analysis.

•	 The need to use much more resources in parallel to complete the analysis in a 
reasonable time, thereby increasing the project cost.

Similarly, another potential issue with sub-optimal queries is an increase in the required 
system memory and compute power. This can result in either of the following two 
scenarios:

•	 Prevention of the analysis due to insufficient resources

•	 A significant increase in the cost of the project to recruit the required resources
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Analysis/queries are part of a service or product. Let's think of a second scenario, 
where analysis is being completed as a component of a greater service or product, 
and so database queries may need to be completed in real time, or at least near-real 
time. In such cases, optimization and efficiency are key for the product to be a success. 
One such example is a GPS navigation system that incorporates the state of traffic 
as reported by other users. For such a system to be effective and provide up-to-date 
navigation information, the database must be analyzed at a rate that keeps up with the 
speed of the car and the progress of the journey. Any delays in the analysis that would 
prevent the navigation from being updated in response to traffic would be of significant 
impact to the commercial viability of the application.

After looking at these two examples, we can see that while efficiency is important in an 
effective and thorough post-hoc analysis, it is absolutely critical when incorporating the 
data analysis as a component of a separate product or service. While it is certainly not 
the job of a data scientist or data analyst to ensure that production and the database are 
working at optimal efficiency, it is critical that the queries of the underlying analysis are 
as effective as possible. If we do not have an efficient and current database in the first 
place, further refinements will not help in improving the performance of the analysis. 
In the next section, we will discuss methods of increasing the performance of scans for 
information throughout a database.

Database Scanning Methods
SQL-compliant databases provide a number of different methods for scanning, 
searching, and selecting data. The right scan method to use is very much dependent on 
the use case and the state of the database at the time of scanning. How many records 
are in the database? Which fields are we interested in? How many records do we expect 
to be returned? How often do we need to execute the query? These are just some of 
the questions that we may want to ask when selecting the most appropriate scanning 
method. Throughout this section, we will describe some of the search methods 
available, how they are used within SQL to execute scans, and a number of scenarios 
where they should/should not be used.
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Query Planning

Before investigating the different methods of executing queries or scanning a database 
for information, it is useful to understand how the SQL server makes various decisions 
about the types of queries to be used. SQL-compliant databases possess a powerful 
tool known as a query planner, which implements a set of features within the server to 
analyze a request and decides upon the execution path. The query planner optimizes 
a number of different variables within the request with the aim of reducing the overall 
execution time. These variables are described in greater detail within the PostgreSQL 
documentation (https://www.postgresql.org/docs/current/runtime-config-query.
html) and include parameters that correspond with the cost of sequential page fetches, 
CPU operations, and cache size.

In this chapter, we will not cover the details of how a query planner implements its 
analysis, since the technical details are quite involved. However, it is important to 
understand how to interpret the plan reported by the query planner. Interpreting the 
planner is critical if we want to get high performance from a database, as doing so 
allows us to modify the contents and structure of queries to optimize performance. 
So, before embarking on a discussion of the various scanning methods, we will gain 
practical experience in using and interpreting the analysis of the query planner.

Scanning and Sequential Scans

When we want to retrieve information from a database, the query planner needs to 
search through the available records in order to get the data we need. There are various 
strategies employed within the database to order and allocate the information for fast 
retrieval. The process that the SQL server uses to search through a database is known 
as scanning.

There are a number of different types of scans that can be used to retrieve information. 
We will start with the sequential scan, as this is the easiest to understand and is the 
most reliable scan available within a SQL database. If all other scans fail, you can 
always fall back to the reliable sequential scan to get the information you need out of a 
database. In some circumstances, the sequential scan isn't the fastest or most efficient; 
however, it will always produce a correct result. The other interesting thing to note 
about the sequential scan is that, at this stage in the book, while you may not be aware 
of it, you have already executed a number of sequential scans. Do you recall entering 
the following command in Chapter 6, Importing and Exporting Data?

sqlda=# SELECT * FROM customers LIMIT 5

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html


Database Scanning Methods | 221

The following is the output of the preceding code:

Figure 8.1: Output of the limited SELECT statement

Extracting data using the SELECT command directly from the database executes a 
sequential scan, where the database server traverses through each record in the 
database and compares each record to the criteria in the sequential scan, returning 
those records that match the criteria. This is essentially a brute-force scan and, thus, 
can always be called upon to execute a search. In many situations, a sequential scan 
is also often the most efficient method and will be automatically selected by the SQL 
server. This is particularly the case if any of the following is true:

•	 The table is quite small. For instance, it may not contain a large number of records.

•	 The field used in searching contains a high number of duplicates.

•	 The planner determines that the sequential scan would be equally efficient or 
more efficient for the given criteria than any other scan.

In this exercise, we will introduce the EXPLAIN command, which displays the plan for a 
query before it is executed. When we use the EXPLAIN command in combination with a 
SQL statement, the SQL interpreter will not execute the statement, but rather return 
the steps that are going to be executed (a query plan) by the interpreter in order to 
return the desired results. There is a lot of information returned in a query plan and 
being able to comprehend the output is vital in tuning the performance of our database 
queries. Query planning is itself a complex topic and can require some practice in 
order to be comfortable in interpreting the output; even the PostgreSQL official 
documentation notes that plan-reading is an art that deserves significant attention 
in its own right. We will start with a simple plan and will work our way through more 
complicated queries and query plans.
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Exercise 26: Interpreting the Query Planner

In this exercise, we will interpret a query planner using the EXPLAIN command. We will 
interpret the query planner of the emails table of the sqlda database. Then, we will 
employ a more involved query, searching for dates between two specific values in the 
clicked_date field. We will need to ensure that the sqlda database is loaded as described 
within the Preface.

Retrieve the Exercise26.sql file from the accompanying source code. This file will 
contain all the queries used throughout this exercise. However, we will enter them 
manually using the SQL interpreter to reinforce our understanding of the query 
planner's operation.

Note

All the exercises and activities in this chapter are also available on GitHub: https://
github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson08.

Observe the following steps to perform the exercise:

1.	 Open PostgreSQL and connect to the sqlda database:

C:\> psql sqlda

Upon successful connection, you will be presented with the interface to the 
PostgreSQL database:

Figure 8.2: PostgreSQL prompt

2.	 Enter the following command to get the query plan of the emails table:

sqlda=# EXPLAIN SELECT * FROM emails;

Information similar to the following will then be presented:

Figure 8.3: Query plan of the emails table

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson08
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson08
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This information is returned by the query planner; while this is the simplest 
example possible, there is quite a bit to unpack in the planner information, so let's 
look through the output step by step:

Figure 8.4: Scan type

The first aspect of the plan that is provided is the type of scan executed by the 
query. We will cover more of the scan types later in the chapter, but, as discussed 
in more detail soon, the Seq Scan (see Figure 8.4), or sequential scan, is a simple 
yet robust type of query:

Figure 8.5: Start up cost

The first measurement reported by the planner, as shown in Figure 8.5, is the 
start up cost, which is the time expended before the scan starts. This time may be 
required to first sort the data or complete other pre-processing applications. It is 
also important to note that the time measured is actually reported in cost units 
(see Figure 8.5) as opposed to seconds or milliseconds. Often, the cost units are 
an indication of the number of disk requests or page fetches made, rather than 
this being a measure in absolute terms. The reported cost is typically more useful 
as a means of comparing the performance of various queries, rather than as an 
absolute measure of time:

Figure 8.6: Total cost
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The next number in the sequence (see Figure 8.6) indicates the total cost 
of executing the query if all available rows are retrieved. There are some 
circumstances in which all the available rows may not be retrieved, but we will 
cover that soon:

Figure 8.7: Rows to be returned

The next figure in the plan (see Figure 8.7) indicates the total number of rows that 
are available to be returned – again, if the plan is completely executed:

Figure 8.8: Width of each row

The final figure (see Figure 8.8), as suggested by its label, indicates the width of 
each row in bytes.

Note

When executing the EXPLAIN command, PostgreSQL does not actually implement 
the query or return the values. It does, however, return a description, along with 
the processing costs involved in executing each stage of the plan.

3.	 Query plan the emails table and set the limit as 5. Enter the following statement 
into the PostgreSQL interpreter:

sqlda=# EXPLAIN SELECT * FROM emails LIMIT 5;

This repeats the previous statement, where the planner is limited to the first five 
records. This query will produce the following output from the planner:

Figure 8.9: Query plan with limited rows
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Referring to Figure 8.9, we can see that there are two individual rows in the plan. 
This indicates that the plan is composed of two separate steps, with the lower 
line of the plan (or, in this case, the first step to be executed) being a repeat of 
that shown in Figure 8.8. The upper line of the plan is the component that limits 
the result to only 5 rows. The Limit process is an additional cost of the query; 
however, it is quite insignificant compared to the lower-level plan, which retrieves 
approximately 418158 rows at a cost of 9606 pages requests. The Limit stage only 
returns 5 rows at a cost of 0.11 page requests.

Note

The overall estimated cost for a request comprises the time taken to retrieve the 
information from the disk as well as the number of rows that need to be scanned. 
The internal parameters, seq_page_cost and cpu_tuple_cost, define the cost of 
the corresponding operations within the tablespace for the database. While not 
recommended at this stage, these two variables can be changed to modify the 
steps prepared by the planner.

For more information, refer to the PostgreSQL documentation: https://www.
postgresql.org/docs/current/runtime-config-query.html.

4.	 Now, employ a more involved query, searching for dates between two specific 
values in the clicked_date column. Enter the following statement into the 
PostgreSQL interpreter:

sqlda=# EXPLAIN SELECT * FROM emails WHERE clicked_date BETWEEN '2011-01-
01' and '2011-02-01';

This will produce the following query plan:

Figure 8.10: Sequential scan for searching dates between two specific values

https://www.postgresql.org/docs/current/runtime-config-query.html
https://www.postgresql.org/docs/current/runtime-config-query.html
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The first aspect of this query plan to note is that it comprises a few different 
steps. The lower-level query is similar to the previous query in that it executes a 
sequential scan. However, rather than limiting the output, we are filtering it on 
the basis of the timestamp strings provided. Notice that the sequential scan is to 
be completed in parallel, as indicated by the Parallel Seq Scan, and the fact that 
two workers are planned to be used. Each individual sequence scan should return 
approximately 54 rows, taking a cost of 8038.49 to complete. The upper level of 
the plan is a Gather state, which is executed at the start of the query. We can 
see here for the first time that the upfront costs are non-zero (1,000) and total 
9051.49, including the gather and search steps.

In this exercise, we worked with the query planner and the output of the EXPLAIN 
command. These relatively simple queries highlighted a number of the features of the 
SQL query planner as well as the detailed information that is provided by it. Having a 
good understanding of the query planner and the information it is returning to you will 
serve you well in your data science endeavors. Just remember that this understanding 
will come with time and practice; never hesitate to consult the PostgreSQL 
documentation: https://www.postgresql.org/docs/current/using-explain.html.

We will continue to practice reading query plans throughout this chapter as we look at 
different scan types and the methods, they use to improve performance.

Activity 10: Query Planning

Our aim in this activity is to query plan for reading and interpreting the information 
returned by the planner. Let's say that we are still dealing with our sqlda database of 
customer records and that our finance team would like us to implement a system to 
regularly generate a report of customer activity in a specific geographical region. To 
ensure that our report can be run in a timely manner, we need an estimate of how long 
the SQL queries will take. We will use the EXPLAIN command to find out how long some 
of the report queries will take:

1.	 Open PostgreSQL and connect to the sqlda database.

2.	 Use the EXPLAIN command to return the query plan for selecting all available 
records within the customers table.

3.	 Read the output of the plan and determine the total query cost, the setup cost, the 
number of rows to be returned, and the width of each row. Looking at the output, 
what are the units for each of the values returned from the plan after performing 
this step?

4.	 Repeat the query from step 2 of this activity, this time limiting the number of 
returned records to 15.

https://www.postgresql.org/docs/current/using-explain.html
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Looking at the updated query plan, how many steps are involved in the query plan? 
What is the cost of the limiting step?

5.	 Generate the query plan, selecting all rows where customers live within a latitude 
of 30 and 40 degrees. What is the total plan cost as well as the number of rows 
returned by the query?

Expected output:

Figure 8.11: Plan for customers living within a latitude of 30 and 40 degrees

Note

The solution to the activity can be found on page 340. For an additional challenge, 
try completing this exercise in Python using psycopg2.

In this activity, we practiced reading the plans returned by the query planner. As 
discussed previously, plan reading requires substantial practice to master it. This 
activity began this process and it is strongly recommended that you frequently use the 
EXPLAIN command to improve your plan reading.

Index Scanning

Index scans are one method of improving the performance of our database queries. 
Index scans differ from sequential scan in that a pre-processing step is executed before 
the search of database records can occur. The simplest way to think of an index scan is 
just like the index of a text or reference book. In writing a non-fiction book, a publisher 
parses through the contents of the book and writes the page numbers corresponding 
with each alphabetically sorted topic. Just as the publisher goes to the initial effort of 
creating an index for the reader's reference, so we can create a similar index within the 
PostgreSQL database. This index within the database creates a prepared and organized 
set or a subset of references to the data under specified conditions. When a query is 
executed and an index is present that contains information relevant to the query, the 
planner may elect to use the data that was pre-processed and pre-arranged within 
the index. Without using an index, the database needs to repeatedly scan through all 
records, checking each record for the information of interest. 
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Even if all of the desired information is at the start of the database, without indexing, 
the search will still scan through all available records. Clearly, this would take a 
significantly longer time than necessary.

There are a number of different indexing strategies that PostgreSQL can use to create 
more efficient searches, including B-trees, hash indexes, Generalized Inverted Indexes 
(GINs), and Generalized Search Trees (GISTs). Each of these different index types has 
its own strengths and weaknesses and, hence, is used in different situations. One of the 
most frequently used indexes is the B-tree, which is the default indexing strategy used 
by PostgreSQL and is available in almost all database software. We will first spend some 
time investigating the B-tree index, looking at what makes it useful as well as some of 
its limitations. 

The B-tree Index

The B-tree index is a type of binary search tree and is characterized by the fact that it 
is a self-balancing structure, maintaining its own data structure for efficient searching. 
A generic B-tree structure can be found in Figure 8.12, in which we can see that each 
node in the tree has no more than two elements (thus providing balance) and that the 
first node has two children. These traits are common among B-trees, where each node 
is limited to n components, thus forcing the split into child nodes. The branches of the 
trees terminate at leaf nodes, which, by definition, have no children:

Figure 8.12: Generic B-tree
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Using Figure 8.12 as an example, say we were looking for the number 13 in the B-tree 
index. We would start at the first node and select whether the number was less than 5 
or greater than 10. This would lead us down the right-hand branch of the tree, where 
we would again choose between less than 15 and greater than 20. We would then select 
less than 15 and arrive at the location of 13 in the index. We can see immediately that 
this operation would be much faster than looking through all available values. We can 
also see that for performance, the tree must be balanced to allow for an easy path for 
traversal. Additionally, there must be sufficient information to allow splitting. If we had 
a tree index with only a few possible values to split on and a large number of samples, 
we would simply divide the data into a few groups.

Considering B-trees in the context of database searching, we can see that we require a 
condition to divide the information (or split) on, and we also need sufficient information 
for a meaningful split. We do not need to worry about the logic of following the 
tree, as that will be managed by the database itself and can vary depending on the 
conditions for searching. Even so, it is important for us to understand the strengths and 
weaknesses of the method to allow us to make appropriate choices when creating the 
index for optimal performance.

To create an index for a set of data, we use the following syntax:

CREATE INDEX <index name> ON <table name>(table column);

We can also add additional conditions and constraints to make the index more selective:

CREATE INDEX <index name> ON <table name>(table column) WHERE [condition];

We can also specify the type of index: 

CREATE INDEX <index name> ON <table name> USING TYPE(table column)

For example:

CREATE INDEX ix_customers ON customers USING BTREE(customer_id);

In the next exercise, we will start with a simple plan and work our way through more 
complicated queries and query plans using index scans.
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Exercise 27: Creating an Index Scan

In this exercise, we will create a number of different index scans and will investigate the 
performance characteristics of each of the scans.

Continuing with the scenario from the previous activity, say we had completed our 
report service but wanted to make the queries faster. We will try to improve this 
performance using indexing and index scans. You will recall that we are using a table of 
customer information that includes contact details such as name, email address, phone 
number, and address information, as well as the latitude and longitude details of their 
address. The following are the steps to perform:

1.	 Ensure that the sqlda database is loaded as described within the Preface. Retrieve 
the Exercise27.sql file from the accompanying source code. This file will contain 
all the queries used throughout this exercise; however, we will enter them 
manually using the SQL interpreter to reinforce our understanding of the query 
planner's operation.

Note

This file can be downloaded from the accompanying source code available at 
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Lesson08/
Exercise27.

2.	 Open PostgreSQL and connect to the sqlda database:

C:\> psql sqlda

Upon successful connection, you will be presented with the interface to the 
PostgreSQL database:

Figure 8.13: PostgreSQL interpreter

3.	 Starting with the customers database, use the EXPLAIN command to determine the 
cost of the query and the number of rows returned in selecting  all of the entries 
with a state value of FO:

sqlda=# EXPLAIN SELECT * FROM customers WHERE state='FO';

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Lesson08/Exercise27
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Lesson08/Exercise27
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The following is the output of the preceding code:

Figure 8.14: Query plan of a sequential scan with constraint

Note that there is only 1 row returned and that the setup cost is 0, but the total 
query cost is 1661.

4.	 Determine how many unique state values there are, again using the EXPLAIN 
command:

sqlda=# EXPLAIN SELECT DISTINCT state FROM customers;

The output is as follows:

Figure 8.15: Unique state values

So, there are 51 unique values within the state column.

5.	 Create an index called ix_state using the state column of customers:

sqlda=# CREATE INDEX ix_state ON customers(state);

6.	 Rerun the EXPLAIN statement from step 5:

sqlda=# EXPLAIN SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

Figure 8.16: Query plan of an index scan on the customers table
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Notice that an index scan is now being used using the index we just created in step 
5. We can also see that we have a non-zero setup cost (0.29), but the total cost is 
very much reduced, from the previous 1661 to only 8.31! This is the power of the 
index scan.

Now, let's look at a slightly different example, looking at the time it takes to return 
a search on the gender column.

7.	 Use the EXPLAIN command to return the query plan for a search for all records of 
males within the database:

sqlda=# EXPLAIN SELECT * FROM customers WHERE gender='M';

The output is as follows:

Figure 8.17: Query plan of a sequential scan on the customers table

8.	 Create an index called ix_gender using the gender column of customers:

sqlda=# CREATE INDEX ix_state ON customers(gender);

9.	 Confirm the presence of the index using \d:

\d customers;

Scrolling to the bottom, we can see the indexes using the ix_ prefix, as well as the 
column from the table used to create the index:

Figure 8.18: Structure of the customers table

10.	 Rerun the EXPLAIN statement from step 10:

sqlda=# EXPLAIN SELECT * FROM customers WHERE gender='M';
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The following is the output of the preceding code:

Figure 8.19: Query plan output of a sequential scan with a condition statement

Notice that the query plan has not changed at all, despite the use of the index 
scan. This is because there is insufficient information to create a useful tree within 
the gender column. There are only two possible values, M and F. The gender 
index essentially splits the information in two; one branch for males, and one for 
females. The index has not split the data into branches of the tree well enough to 
gain any benefit. The planner still needs to sequentially scan through at least half 
of the data, and so it is not worth the overhead of the index. It is for this reason 
that the query planner insists on not using the index.

11.	 Use EXPLAIN to return the query plan, searching for latitudes less than 38 degrees 
and greater than 30 degrees:

sqlda=# EXPLAIN SELECT * FROM customers WHERE (latitude < 38) AND 
(latitude > 30);

The following is the output of the preceding code:

Figure 8.20: Query plan of a sequential scan on the customers table  
with a multi-factor conditional statement

Notice that the query is using a sequential scan with a filter. The initial sequential 
scan returns 17788 before the filter and costs 1786 with 0 start up cost.

12.	 Create an index called ix_latitude using the latitude column of customers: 

sqlda=# CREATE INDEX ix_latitude ON customers(latitude);
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13.	 Rerun the query of step 11 and observe the output of the plan:

Figure 8.21: Observe the plan after rerunning the query

We can see that the plan is a lot more involved than the previous one, with a 
bitmap heap scan and a bitmap index scan being used. We will cover bitmap scans 
soon, but first, let's get some more information by adding the ANALYZE command to 
EXPLAIN.

14.	 Use EXPLAIN ANALYZE to query plan the content of the customers table with latitude 
values of between 30 and 38:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE (latitude < 38) AND 
(latitude > 30);

The following output will be displayed:

Figure 8.22: Query plan output containing additional EXPLAIN ANALYZE content

With this extra information, we can see that there is 0.3 ms of planning time and 
14.582 ms of execution time, with the index scan taking almost the same amount 
of time to execute as the bitmap heat scan takes to start.

15.	 Now, let's create another index where latitude is between 30 and 38 on the 
customers table:

sqlda=# CREATE INDEX ix_latitude_less ON customers(latitude) WHERE 
(latitude < 38) and (latitude > 30);
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16.	 Re-execute the query of step 15 and compare the query plans:

Figure 8.23: Query plan displaying the trade-off between planning and execution time

Using this more targeted index, we were able to shave 0.681 ms off the execution 
time, at the cost of an additional 0.3 ms of planning time. 

Thus, we have squeezed some additional performance out of our query as our indexes 
have made the searching process more efficient. We may have had to pay an upfront 
cost to create the index, but once created, repeat queries can be executed more quickly.

Activity 11: Implementing Index Scans

In this activity, we will determine whether index scans can be used to reduce query 
time. After creating our customer reporting system for the marketing department in 
Activity 10: Query Planning, we have received another request to allow records to be 
identified by their IP address or the associated customer names. We know that there 
are a lot of different IP addresses and we need performant searches. Plan out the 
queries required to search for records by IP address as well as for certain customers 
with the suffix Jr in their name. 

Here are the steps to follow:

1.	 Use the EXPLAIN and ANALYZE commands to profile the query plan to search for all 
records with an IP address of 18.131.58.65. How long does the query take to plan 
and execute?

2.	 Create a generic index based on the IP address column.

3.	 Rerun the query of step 1. How long does the query take to plan and execute?

4.	 Create a more detailed index based on the IP address column with the condition 
that the IP address is 18.131.58.65.
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5.	 Rerun the query of step 1. How long does the query take to plan and execute? What 
are the differences between each of these queries?

6.	 Use the EXPLAIN and ANALYZE commands to profile the query plan to search for all 
records with a suffix of Jr. How long does the query take to plan and execute?

7.	 Create a generic index based on the suffix address column.

8.	 Rerun the query of step 6. How long does the query take to plan and execute?

Expected output

Figure 8.24: Query plan of the scan after creating an index on the suffix column

Note

The solution to the activity can be found on page 341.

In this activity, we have squeezed some additional performance out of our query as our 
indexes have made the searching process more efficient. We will learn how the hash 
index works in the next section.

Hash Index

The final indexing type we will cover is the hash index. The hash index has only recently 
gained stability as a feature within PostgreSQL, with previous versions issuing warnings 
that the feature is unsafe and reporting that the method is typically not as performant 
as B-tree indexes. At the time of writing, the hash index feature is relatively limited in 
the comparative statements it can run, with equality (=) being the only one available. So, 
given that the feature is only just stable and somewhat limited in options for use, why 
would anyone use it? Well, hash indices are able to describe large datasets (in the order 
of tens of thousands of rows or more) using very little data, allowing more of the data 
to be kept in memory and reducing search times for some queries. This is particularly 
important for databases that are at least several gigabytes in size.
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A hash index is an indexing method that utilizes a hash function to achieve its 
performance benefits. A hash function is a mathematical function that takes data or 
a series of data and returns a unique length of alphanumeric characters depending 
upon what information was provided and the unique hash code used. Let's say we 
had a customer named "Josephine Marquez." We could pass this information to a hash 
function, which could produce a hash result such as 01f38e. Say we also had records for 
Josephine's husband, Julio; the corresponding hash for Julio could be 43eb38a. A hash 
map uses a key-value pair relationship to find data. 

We could (but are not limited to) use the values of a hash function to provide the 
key, using the data contained in the corresponding row of the database as the value. 
As long as the key is unique to the value, we can quickly access the information we 
require. This method can also reduce the overall size of the index in memory, if only the 
corresponding hashes are stored, thereby dramatically reducing the search time for a 
query. 

The following example shows how to create a hash index:

sqlda=# CREATE INDEX ix_gender ON customers USING HASH(gender);

You will recall that the query planner is able to ignore the indices created if it deems 
them to be not significantly faster for the existing query or just not appropriate. As the 
hash scan is somewhat limited in use, it may not be uncommon for a different search to 
ignore the indices.

Exercise 28: Generating Several Hash Indexes to Investigate Performance

In this exercise, we will generate a number of hash indexes and investigate the potential 
performance increases that can be gained from using them. We will start the exercise 
by rerunning some of the queries of previous exercises and comparing the execution 
times:

1.	 Drop all existing indexes using the DROP INDEX command:

DROP INDEX <index name>; 

2.	 Use EXPLAIN and ANALYZE on the customer table where the gender is male, but 
without using a hash index:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
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The following output will be displayed:

Figure 8.25: Standard sequential scan

We can see here that the estimated planning time is 0.107 ms and the execution 
time is 29.905 ms.

3.	 Create a B-tree index on the gender column and repeat the query to determine the 
performance using the default index:

sqlda=# CREATE INDEX ix_gender ON customers USING btree(gender);
sqlda=# 

The following is the output of the preceding code:

Figure 8.26: Query planner ignoring the B-tree index

We can see here that the query planner has not selected the B-tree index, but 
rather the sequential scan. The costs of the scans do not differ, but the planning 
and execution time estimates have been modified. This is not unexpected, as these 
measures are exactly that – estimates based on a variety of different conditions, 
such as data in memory and I/O constraints.

4.	 Repeat the following query at least five times manually and observe the time 
estimates after each execution:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';
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The results of the five individual queries can be seen in the following screenshot; 
note that the planning and execution times differ for each separate execution of 
the query:

Figure 8.27: Five repetitions of the same sequential scan
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5.	 Drop or remove the index:

sqlda=# DROP INDEX ix_gender;

6.	 Create a hash index on the gender column:

sqlda=# CREATE INDEX ix_gender ON customers USING HASH(gender);

7.	 Repeat the query from step 4 to see the execution time:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE gender='M';

The following output will be displayed:

Figure 8.28: Query planner ignoring the hash index

As with the B-tree index, there was no benefit to using the hash index on the 
gender column, and so it was not used by the planner.

8.	 Use the EXPLAIN ANALYZE command to profile the performance of the query that 
selects all customers where the state is FO:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following output will be displayed:

Figure 8.29: Sequential scan with filter by specific state
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9.	 Create a B-tree index on the state column of the customers table and repeat the 
query profiling:

sqlda=# CREATE INDEX ix_state ON customers USING BTREE(state);
sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

Figure 8.30: Performance benefit due to B-tree indexing

Here, we can see a significant performance increase due to the B-tree index with 
a slight setup cost. How does the hash scan perform? Given that the execution 
time has dropped from 22.3 ms to 0.103 ms, it is reasonable to conclude that the 
increased planning cost has increased by approximately 50%. 

10.	 Drop the ix_state B-tree index and create a hash scan:

sqlda=# DROP INDEX ix_state;
sqlda=# CREATE INDEX ix_state ON customers USING HASH(state);

11.	 Use EXPLAIN and ANALYZE to profile the performance of the hash scan:

sqlda=# EXPLAIN ANALYZE SELECT * FROM customers WHERE state='FO';

The following is the output of the preceding code:

Figure 8.31: Additional performance boost using a hash index

We can see that, for this specific query, a hash index is particularly effective, 
reducing both the planning/setup time and cost of the B-tree index, as well as 
reducing the execution time to less than 1 ms from approximately 25 ms.

In this exercise, we used hash indexes to find the effectiveness of a particular query. We 
saw how the execution time goes down when using a hash index in a query.
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Activity 12: Implementing Hash Indexes

In this activity, we will investigate the use of hash indexes to improve performance 
using the emails table from the sqlda database. We have received another request from 
the marketing department. This time, they would like us to analyze the performance 
of an email marketing campaign. Given that the success rate of email campaigns is 
low, many different emails are sent to many customers at a time. Use the EXPLAIN and 
ANALYZE commands to determine the planning time and cost, as well as the execution 
time and cost, of selecting all rows where the email subject is Shocking Holiday Savings 
On Electric Scooters:

1.	 Use the EXPLAIN and ANALYZE commands to determine the planning time and 
cost, as well as the execution time and cost, of selecting all rows where the email 
subject is Shocking Holiday Savings On Electric Scooters in the first query and 
Black Friday. Green Cars. in the second query.

2.	 Create a hash scan on the email_subject column.

3.	 Repeat step 1. Compare the output of the query planner without the hash index to 
that with the hash index. What effect did the hash scan have on the performance 
of the two queries?

4.	 Create a hash scan on the customer_id column.

5.	 Use EXPLAIN and ANALYZE to estimate how long it would take to select all rows with 
a customer_id value greater than 100. What type of scan was used and why?

Expected output:

Figure 8.32: Query planner ignoring the hash index due to limitations

Note

The solution to the activity can be found on page 343.
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In this activity, a sequential scan was used in this query rather than the hash scan 
created due to the current limitations of hash scan usage. At the time of writing, use of 
the hash scan is limited to equality comparisons, which involves searching for values 
equal to a given value.

Effective Index Use

So far in this chapter, we have looked at a number of different scanning methods, and 
the use of both B-trees and hash scans as a means of reducing query times. We have 
also presented a number of different examples of where an index was created for a field 
or condition and was explicitly not selected by the query planner when executing the 
query as it was deemed a more inefficient choice. In this section, we will spend some 
time discussing the appropriate use of indexes for reducing query times, since, while 
indexes may seem like an obvious choice for increasing query performance, this is not 
always the case. Consider the following situations:

•	 The field you have used for your index is frequently changing: In this situation, 
where you are frequently inserting or deleting rows in a table, the index that you 
have created may quickly become inefficient as it was constructed for data that is 
either no longer relevant or has since had a change in value. Consider the index 
at the back of this book. If you move the order of the chapters around, the index 
is no longer valid and would need to be republished. In such a situation, you may 
need to periodically re-index the data to ensure the references to the data are up 
to date. In SQL, we can rebuild the data indices by using the REINDEX command, 
which leads to a scenario where you will need to consider the cost, means, and 
strategy of frequent re-indexing versus other performance considerations, such 
as the query benefits introduced by the index, the size of the database, or even 
whether changes to the database structure could avoid the problem altogether.

•	 The index is out of date and the existing references are either invalid or there 
are segments of data without an index, preventing use of the index by the query 
planner: In such a situation, the index is so old that it cannot be used and thus 
needs to be updated. 

•	 You are frequently looking for records containing the same search criteria 
within a specific field: We considered an example similar to this when looking 
for customers within a database whose records contained latitude values of less 
than 38 and greater than 30, using SELECT * FROM customers WHERE (latitude < 
38) and (latitude > 30). In this example, it may be more efficient to create a 
partial index using the subset of data, as here: CREATE INDEX ix_latitude_less ON 
customers(latitude) WHERE (latitude < 38) and (latitude > 30). In this way, the 
index is only created using the data we are interested in, and is thereby smaller 
in size, quicker to scan, easier to maintain, and can also be used in more complex 
queries.
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•	 The database isn't particularly large: In such a situation, the overhead of creating 
and using the index may simply not be worth it. Sequential scans, particularly 
those using data already in RAM, are quite fast, and if you create an index on a 
small dataset, there is no guarantee that the query planner will use it or get any 
significant benefit from using it.

Performant Joins
The JOIN functionality in SQL-compliant databases provides a very powerful and 
efficient method of combining data from different sources, without the need for 
complicated looping structures or a series of individual SQL statements. We covered 
joins and join theory in detail in Chapter 3, SQL for Data Preparation. As suggested by 
the name of the command, a join takes information from two or more tables and uses 
the contents of the records within each table to combine the two sets of information. 
Because we are combining this information without the use of looping structures, 
this can be done very efficiently. In this section, we will consider the use of joins as 
a more performant alternative to looping structures. The following is the Customer 
Information table:

Figure 8.33: Customer information

The following table shows the Order Information table:

Figure 8.34: Order information
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So, with this information, we may want to see whether there are some trends in the 
items that are sold based on the customer's address. We can use JOIN to bring these two 
sets of information together; we will use the Customer ID column to combine the two 
datasets and produce the information shown in the following table:

Figure 8.35: Join by customer ID

We can see in the preceding example that the join included all of the records where 
there was information available for both the customer and the order. As such, the 
customer Meat Hook was omitted from the combined information since no order 
information was available. In the example, we executed INNER JOIN; there are, however, 
a number of different joins available, and we will spend some time looking through each 
of them. The following is an example that shows the use of a performant INNER JOIN:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, order_
info.product_code, order_info.qty FROM customers INNER JOIN order_info ON 
customers.customer_id=order_info.customer_id;

Refer to Chapter 3, SQL for Data Preparation, for more information on joins. In the next 
exercise, we will investigate the use of performant inner joins.

Exercise 29: Determining the Use of Inner Joins

In this exercise, we will investigate the use of inner joins to efficiently select multiple 
rows of data from two different tables. Let's say that our good friends in the marketing 
department gave us two separate databases: one from SalesForce and one from Oracle. 
We could use a JOIN statement to merge the corresponding information from the two 
sources into a single source. Here are the steps to follow:

1.	 Create a database called smalljoins on the PostgreSQL server:

$ createdb smalljoins

2.	 Load the smalljoins.dump file provided in the accompanying source code from 
the GitHub repository: https://github.com/TrainingByPackt/SQL-for-Data-
Analytics/blob/master/Datasets/smalljoins.dump:

$psql smalljoins < smalljoins.dump

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Datasets/smalljoins.dump
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/blob/master/Datasets/smalljoins.dump
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3.	 Open the database:

$ psql smalljoins

4.	 Inspect the information available for customers:

smalljoins=# SELECT * FROM customers;

The following figure shows the output of the preceding code:

Figure 8.36: Customer table

5.	 Inspect the information available for the order information:

smalljoins=# SELECT * FROM order_info;

This will display the following output:

Figure 8.37: Order information table

6.	 Execute an inner join where we retrieve all columns from both tables without 
duplicating the customer_id column to replicate the results from Figure 8.35. We 
will set the left table to be customers and the right table to be order_info. So, to 
be clear, we want all columns from customers and the order_id, product_code, and 
qty columns from order_info when a customer has placed an order. Write this as a 
SQL statement:

smalljoins=# SELECT customers.*, order_info.order_id, order_info.product_
code, order_info.qty FROM customers INNER JOIN order_info ON customers.
customer_id=order_info.customer_id;
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The following figure shows the output of the preceding code:

Figure 8.38 Join of customer and order information

7.	 Save the results of this query as a separate table by inserting the INTO table_name 
keywords:

smalljoins=# SELECT customers.*, order_info.order_id, order_info.product_
code, order_info.qty INTO join_results FROM customers INNER JOIN order_
info ON customers.customer_id=order_info.customer_id;

The following figure shows the output of the preceding code:

Figure 8.39: Save results of join to a new table

8.	 Use EXPLAIN ANALYZE to get an estimate of the time taken to execute the join. Now, 
how much faster is the join?

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, 
order_info.product_code, order_info.qty FROM customers INNER JOIN order_
info ON customers.customer_id=order_info.customer_id;

This will display the following output:

Figure 8.40: Baseline reading for comparing the performance of JOIN
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9.	 Select all of the customer_id values that are in order_info and use EXPLAIN ANALYZE 
to find out how long it takes to execute these individual queries:

smalljoins=# EXPLAIN ANALYZE SELECT * FROM customers WHERE customer_id IN 
(SELECT customer_id FROM order_info);

The following screenshot shows the output of the preceding code:

Figure 8.41: Improved performance of JOIN using a hash index

Looking at the results of the two query planners, we can see that not only did 
the inner join take about a third of the time of the sequential query (0.177 ms 
compared with 1.533 ms), but also that we have returned more information by the 
inner join, with order_id, product_code, and qty also being returned.

10.	 Execute a left join using the customers table as the left table and order_info as the 
right table:

smalljoins=# SELECT customers.*, order_info.order_id, order_info.product_
code, order_info.qty FROM customers LEFT JOIN order_info ON customers.
customer_id=order_info.customer_id;

The following screenshot shows the output of the preceding code:

Figure 8.42: Left join of the customers and order_info tables

Notice the differences between the left join and the inner join. The left join has 
included the result for customer_id 4 twice, and has included the result for Meat 
Hook once, although there is no order information available. It has included the 
results of the left table with blank entries for information that is not present in the 
right table.
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11.	 Use EXPLAIN ANALYZE to determine the time and cost of executing the join:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, 
order_info.product_code, order_info.qty FROM customers LEFT JOIN order_
info ON customers.customer_id=order_info.customer_id;

This will display the following output:

Figure 8.43: Query planner for executing the left join

12.	 Replace the left join of step 11 with a right join and observe the results:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, 
order_info.product_code, order_info.qty FROM customers RIGHT JOIN order_
info ON customers.customer_id=order_info.customer_id;

The following screenshot shows the output of the preceding code:

Figure 8.44: Results of a right join

Again, we have two entries for customer_id 4, Guybrush Threepwood, but we can 
see that the entry for customer_id 1, Meat Hook, is no longer present as we have 
joined on the basis of the information within the contents of the order_id table.

13.	 Use EXPLAIN ANALYZE to determine the time and cost of the right join:

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, 
order_info.product_code, order_info.qty FROM customers RIGHT JOIN order_
info ON customers.customer_id=order_info.customer_id;
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The following screenshot shows the output of the preceding code:

Figure 8.45: Query plan of a right join

We can see that the right join was marginally faster and more cost effective, which 
can be attributed to one less row being returned than in the left join.

14.	 Insert an additional row into order_info with a customer_id value that is not 
present in the customers table:

smalljoins=# INSERT INTO order_info (order_id, customer_id, product_code, 
qty) VALUES (1621, 6, 'MEL386', 1);

15.	 Replace the left join of step 11 with a full outer join and observe the results:

smalljoins=# SELECT customers.*, order_info.order_id, order_info.
product_code, order_info.qty FROM customers FULL OUTER JOIN order_info ON 
customers.customer_id=order_info.customer_id;

This will display the following output:

Figure 8.46: Results of a full outer join

Notice the line that contains product_code MEL386, but no information 
regarding the customer; there's a similar case for the line for customer_id Meat 
Hook. The full outer join has combined all available information even if some of the 
information is not available from either table.
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16.	 Use the EXPLAIN ANALYZE command to determine the performance of the query.

smalljoins=# EXPLAIN ANALYZE SELECT customers.*, order_info.order_id, 
order_info.product_code, order_info.qty FROM customers FULL OUTER JOIN 
order_info ON customers.customer_id=order_info.customer_id;

The following screenshot shows the output of the preceding code:

Figure 8.47: Query plan of a full outer join

The performance is very similar to that of the other queries, given that an 
additional row is provided, which can be clearly seen in the final output.

In this exercise, we were introduced to the usage and performance benefits of joins. 
We observed the combination of information from two separate tables using fewer 
resources than individual searches require, as well as the use of OUTER JOIN to efficiently 
combine all information. In the next activity, we will build upon our understanding of 
joins with a much larger dataset.

Activity 13: Implementing Joins

In this activity, our goal is to implement various performant joins. In this activity, we will 
use joins to combine information from a table of customers as well as information from 
a marketing email dataset. Say we have just collated a number of different email records 
from a variety of different databases. We would like to distill the information down into 
a single table so that we can perform some more detailed analysis. Here are the steps to 
follow:

1.	 Open PostgreSQL and connect to the sqlda database.

2.	 Determine a list of customers (customer_id, first_name, and last_name) who had 
been sent an email, including information for the subject of the email and whether 
they opened and clicked on the email. The resulting table should include the 
customer_id, first_name, last_name, email_subject, opened, and clicked columns.

3.	 Save the resulting table to a new table, customer_emails.

4.	 Find those customers who opened or clicked on an email.



252 | Performant SQL

5.	 Find the customers who have a dealership in their city; customers who do not 
have a dealership in their city should have a blank value for the city columns.

6.	 List those customers who do not have dealerships in their city (hint: a blank field is 
NULL).

Expected output

Figure 8.48: Customers without city information

The output shows the final list of customers in the cities where we have no 
dealerships.

Note

The solution to the activity can be found on page 346.

In this activity, we used joins to combine information from a table of customers as well 
as information from a marketing email dataset and helped the marketing manager to 
solve their query.

Functions and Triggers
So far in this chapter, we have discovered how to quantify query performance via the 
query planner, as well as the benefits of using joins to collate and extract information 
from multiple database tables. In this section, we will construct reusable queries and 
statements via functions, as well as automatic function execution via trigger callbacks. 
The combination of these two SQL features can be used to not only run queries or 
re-index tables as data is added to/updated in/removed from the database, but also 
to run hypothesis tests and track the results of the tests throughout the life of the 
database. 
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Function Definitions

As in almost all other programming or scripting languages, functions in SQL are 
contained sections of code, which provides a lot of benefits, such as efficient code 
reuse and simplified troubleshooting processes. We can use functions to repeat/modify 
statements or queries without re-entering the statement each time or searching for its 
use throughout longer code segments. One of the most powerful aspects of functions 
is also that they allow us to break the code into smaller, testable chunks. As the popular 
computer science expression goes "If the code is not tested, it cannot be trusted."

So, how do we define functions in SQL? There is a relatively straightforward syntax, 
with the SQL syntax keywords:

CREATE FUNCTION some_function_name (function_arguments) 

RETURNS return_type AS $return_name$

DECLARE return_name return_type;

BEGIN

  <function statements>;

RETURN <some_value>;

END; $return_name$

LANGUAGE PLPGSQL;

The following is a small explanation of the function used in the preceding code:

•	 some_function_name is the name issued to the function and is used to call the 
function at later stages.

•	 function_arguments is an optional list of function arguments. This could be empty, 
without any arguments provided, if we don't need any additional information to 
be provided to the function. To provide additional information, we can either use 
a list of different data types as the arguments (such as integer and numeric), or 
a list of arguments with parameter names (such as min_val integer and max_val 
numeric).

•	 return_type is the data type being returned from the function.

•	 return_name is the name of the variable to be returned (optional).

The DECLARE return_name return_type statement is only required if return_name is 
provided, and a variable is to be returned from the function. If return_name is not 
required, this line can be omitted from the function definition.

•	 function statements entail the SQL statements to be executed within the function.

•	 some_value is the data to be returned from the function.
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•	 PLPGSQL specifies the language to be used in the function. PostgreSQL gives the 
ability to use other languages; however, their use in this context lies beyond the 
scope of this book.

Note

The complete PostgreSQL documentation for functions can be found at https://
www.postgresql.org/docs/current/extend.html.

Exercise 30: Creating Functions without Arguments

In this exercise, we will create the most basic function – one that simply returns a 
constant value – so we can build up a familiarity with the syntax. We will construct our 
first SQL function that does not take any arguments as additional information. This 
function may be used to repeat SQL query statements that provide basic statistics 
about the data within the tables of the sqlda database. These are the steps to follow:

1.	 Connect to the sqlda database:

$ psql sqlda

2.	 Create a function called fixed_val that does not accept any arguments and returns 
an integer. This is a multi-line process. Enter the following line first:

sqlda=# CREATE FUNCTION fixed_val() RETURNS integer AS $$

This line starts the function declaration for fixed_val, and we can see that there 
are no arguments to the function, as indicated by the open/closed brackets, (), nor 
any returned variables.

3.	 In the next line, notice that the characters within the command prompt have 
adjusted to indicate that it is awaiting input for the next line of the function:

sqlda$#

4.	 Enter the BEGIN keyword (notice that as we are not returning a variable, the line 
containing the DECLARE statement has been omitted):

sqlda$# BEGIN

5.	 We want to return the value 1 from this function, so enter the statement RETURN 1:

sqlda$# RETURN 1;

6.	 End the function definition:

sqlda$# END; $$

https://www.postgresql.org/docs/current/extend.html
https://www.postgresql.org/docs/current/extend.html
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7.	 Finally, add the LANGUAGE statement, as shown in the following function definition:

sqlda-# LANGUAGE PLPGSQL; 

This will complete the function definition.

8.	 Now that the function is defined, we can use it. As with almost all other SQL 
statements we have completed to date, we simply use a SELECT command:

sqlda=# SELECT * FROM fixed_val();

This will display the following output:

Figure 8.49: Output of the function call

Notice that the function is called using the open and closed brackets in the SELECT 
statement.

9.	 Use EXPLAIN and ANALYZE in combination with this statement to characterize the 
performance of the function:

sqlda=# EXPLAIN ANALYZE SELECT * FROM fixed_val();

The following screenshot shows the output of the preceding code:

Figure 8.50: Performance of the function call

So far, we have seen how to create a simple function, but simply returning a fixed 
value is not particularly useful. We will now create a function that determines 
the number of samples in the sales table. Notice that the three rows being 
referenced in the preceding screesnhot refer not to the result of SELECT * FROM 
fixed_val(); but rather the result of the query planner. Looking at the first line of 
the information returned by the query planner, we can see that only one row of 
information is returned from the SELECT statement.
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10.	 Create a function called num_samples that does not take any arguments but returns 
an integer called total that represents the number of samples in the sales table:

sqlda=# CREATE FUNCTION num_samples() RETURNS integer AS $total$

11.	 We want to return a variable called total, and thus we need to declare it. Declare 
the total variable as an integer:

sqlda$# DECLARE total integer;

12.	 Enter the BEGIN keyword:

sqlda$# BEGIN

13.	 Enter the statement that determines the number of samples in the table and 
assigns the result to the total variable:

sqlda$# SELECT COUNT(*) INTO total FROM sales;

14.	 Return the value for total:

sqlda$# RETURN total;

15.	 End the function with the variable name:

sqlda$# END; $total$

16.	 Add the LANGUAGE statement as shown in the following function definition:

sqlda-# LANGUAGE PLPGSQL; 

This will complete the function definition, and upon successful creation, the 
CREATE_FUNCTION statement will be shown.

17.	 Use the function to determine how many rows or samples there are in the sales 
table:

sqlda=# SELECT num_samples();

The following figure shows the output of the preceding code:

Figure 8.51: Output of the num_samples function call

We can see that by using the SELECT statement in combination with our SQL 
function, there are 37,711 records within the sales database.
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In this exercise, we have created our first user-defined SQL function and discovered 
how to create and return information from variables within the function.

Activity 14: Defining a Maximum Sale Function

Our aim here is to create a user-defined function so we can calculate the largest 
sale amount in a single function call. In this activity, we will reinforce our knowledge 
of functions as we create a function that determines the highest sale amount in a 
database. At this stage, our marketing department is starting to make a lot of data 
analysis requests and we need to be more efficient in fulfilling them, as they are 
currently just taking too long. Perform the following steps:

1.	 Connect to the sqlda database.

2.	 Create a function called max_sale that does not take any input arguments but 
returns a numeric value called big_sale.

3.	 Declare the big_sale variable and begin the function.

4.	 Insert the maximum sale amount into the big_sale variable.

5.	 Return the value for big_sale.

6.	 End the function with the LANGUAGE statement.

7.	 Call the function to find what the biggest sale amount in the database is?

Expected output

Figure 8.52: Output of the maximum sales function call

Note

The solution to the activity can be found on page 348.

In this activity, we created a user-defined function to calculate the largest sale amount 
from a single function call using the MAX function.
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Exercise 31: Creating Functions with Arguments Using a Single Function

Our goal is now to create a function that will allow us to calculate information from 
multiple tables using a single function. In this exercise, we will create a function that 
determines the average value from the sales amount column, with respect to the value 
of the corresponding channel. After creating our previous user-defined function to 
determine the biggest sale in the database, we have observed a significant increase in 
the efficiency with which we fulfill our marketing department's requests.

Perform the following steps to complete the exercise:

1.	 Connect to the sqlda database:

$ psql sqlda

2.	 Create a function called avg_sales that takes a text argument input, channel_type, 
and returns a numeric output:

sqlda=# CREATE FUNCTION avg_sales(channel_type TEXT) RETURNS numeric AS 
$channel_avg$

3.	 Declare the numeric channel_avg variable and begin the function:

sqlda$# DECLARE channel_avg numeric;
sqlda$# BEGIN 

4.	 Determine the average sales_amount only when the channel value is equal to 
channel_type:

sqlda$# SELECT AVG(sales_amount) INTO channel_avg FROM sales WHERE 
channel=channel_type; 

5.	 Return channel_avg:

sqlda$# RETURN channel_avg; 

6.	 End the function and specify the LANGUAGE statement:

sqlda$# END; $channel_avg$
sqlda-# LANGUAGE PLPGSQL; 

7.	 Determine the average sales amount for the internet channel:

sqlda=# SELECT avg_sales('internet');
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The following figure shows the output of the preceding code:

Figure 8.53: Output of the average sales function call with the internet parameter

Now do the same for the dealership channel:

sqlda=# SELECT avg_sales('dealership');

The following figure shows the output of the preceding code:

Figure 8.54: Output of the average sales function call with the dealership parameter

This output shows the average sales for a dealership, which is 7939.331.

In this exercise, we were introduced to using function arguments to further modify the 
behavior of functions and the outputs they return.

The \df and \sf commands

You can use the \df command in PostgreSQL to get a list of functions available in 
memory, including the variables and data types passed as arguments:

Figure 8.55: Result of the \df command on the sqlda database
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The \sf function_name command in PostgreSQL can be used to review the function 
definition for already-defined functions:

Figure 8.56: Contents of the function using \sf

Activity 15: Creating Functions with Arguments

In this activity, our goal is to create a function with arguments and compute the output. 
In this activity, we will construct a function that computes the average sales amount 
for transaction sales within a specific date range. Each date is to be provided to the 
function as a text string. These are the steps to follow:

1.	 Create the function definition for a function called avg_sales_window that returns 
a numeric value and takes two DATE values to specify the from and to dates in the 
form YYYY-MM-DD.

2.	 Declare the return variable as a numeric data type and begin the function.

3.	 Select the average sales amount as the return variable where the sales transaction 
date is within the specified date.

4.	 Return the function variable, end the function, and specify the LANGUAGE statement.

5.	 Use the function to determine the average sales values between 2013-04-12 and 
2014-04-12.

Expected output

Figure 8.57: Output of average sales since the function call

Note

The solution to the activity can be found on page 349.
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In this activity, we constructed a function that computes the average sales amount for 
transaction sales within a specific date range from the database.

Triggers

Triggers, known as events or callbacks in other programming languages, are useful 
features that, as the name suggests, trigger the execution of SQL statements or 
functions in response to a specific event. Triggers can be initiated when one of the 
following happens:

•	 A row is inserted into a table

•	 A field within a row is updated

•	 A row within a table is deleted

•	 A table is truncated – that is, all rows are quickly removed from a table

The timing of the trigger can also be specified to occur:

•	 Before an insert, update, delete, or truncate operation

•	 After an insert, update, delete, or truncate operation

•	 Instead of an insert, update, delete, or truncate operation

Depending upon the context and the purpose of the database, triggers can have a wide 
variety of different use cases and applications. In a production environment where a 
database is being used to store business information and make process decisions (such 
as for a ride-sharing application or an e-commerce store), triggers can be used before 
any operation to create access logs to the database. These logs can then be used to 
determine who has accessed or modified the data within the database. Alternatively, 
triggers could be used to re-map database operations to a different database or table 
using the INSTEAD OF trigger. 

In the context of a data analysis application, triggers can be used to either create 
datasets of specific features in real time (such as for determining the average of data 
over time or a sample-to-sample difference), test hypotheses concerning the data, or 
flag outliers being inserted/modified in a dataset. 
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Given that triggers are used frequently to execute SQL statements in response to 
events or actions, we can also see why functions are often written specifically for or 
paired with triggers. Self-contained, repeatable function blocks can be used for both 
trialing/debugging the logic within the function as well as inserting the actual code 
within the trigger. So, how do we create a trigger? Similarly, to the case with function 
definitions, there is a standard syntax; again, the SQL keywords:

CREATE TRIGGER some_trigger_name { BEFORE | AFTER | INSTEAD OF } { INSERT | 
DELETE | UPDATE | TRUNCATE } ON table_name

FOR EACH { ROW | STATEMENT } 

EXECUTE PROCEDURE function_name ( function_arguments)

Looking at this generic trigger definition, we can see that there are a few individual 
components:

•	 We need to provide a name for the trigger in place of some_trigger_name.

•	 We need to select when the trigger is going to occur; either BEFORE, AFTER, or 
INSTEAD OF an event.

•	 We need to select what type of event we want to trigger on; either INSERT, DELETE, 
UPDATE, or TRUNCATE.

•	 We need to provide the table we want to monitor for events in table_name.

•	 The FOR EACH statement is used to specify how the trigger is to be fired. We can 
fire the trigger for each ROW that is within the scope of the trigger, or just once per 
STATEMENT despite the number of rows being inserted into the table.

•	 Finally, we just need to provide function_name and any relevant/required function_
arguments to provide the functionality that we want to use on each trigger.

Some other functions that we will use are these:

•	 The get_stock function takes a product code as a TEXT input and returns the 
currently available stock for the specific product code. 

•	 The insert_order function is used to add a new order to the order_info table and 
takes customer_id INTEGER, product_code TEXT, and qty INTEGER as inputs; it will 
return the order_id instance generated for the new record. 

•	 The update_stock function will extract the information from the most recent order 
and will update the corresponding stock information from the products table for 
the corresponding product_code.
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There are a number of different options available for SQL triggers that lie outside the 
scope of this book. For the complete trigger documentation, you can refer to https://
www.postgresql.org/docs/current/sql-createtrigger.html.

Exercise 32: Creating Triggers to Update Fields

In this exercise, we will create a trigger that updates the fields whenever data is added. 
For this exercise, we will use the smalljoins database from the section of this chapter 
on joins and will create a trigger that updates the stock value within products for a 
product each time that an order is inserted into the order_info table. Using such a 
trigger, we can update our analysis in real time as end users interact with the database. 
These triggers will remove the need for us to run the analysis for the marketing 
department manually; instead, they will generate the results for us.

For this scenario, we will create a trigger to update the records for the available stock 
within the database for each of our products. As items are bought, the triggers will be 
fired, and the quantity of available stock will be updated. Here are the steps to perform:

1.	 Load the prepared functions into the smalljoins database using the Functions.
sql file which can be found in the accompanying source code, it is also available 
on GitHub: https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/
master/Lesson08/Exercise32.

$ psql smalljoins < Functions.sql

2.	 Connect to the smalljoins database:

$ psql smalljoins

3.	 Get a list of the functions using the \df command after loading the function 
definitions:

smalljoins=# \df

This will display the following output:

Figure 8.58: List of functions

https://www.postgresql.org/docs/current/sql-createtrigger.html
https://www.postgresql.org/docs/current/sql-createtrigger.html
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson08/Exercise32
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Lesson08/Exercise32
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4.	 First, let's look at the current state of the products table:

smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

Figure 8.59: List of products

For the order_info table, we can write the following query:

smalljoins=# SELECT * FROM order_info;

The following figure shows the output of the preceding code:

Figure 8.60: List of order information

5.	 Insert a new order using the insert_order function with customer_id 4, product_
code MON636, and qty 10:

smalljoins=# SELECT insert_order(4, 'MON636', 10);

The following figure shows the output of the preceding code:

Figure 8.61: Creating a new order

6.	 Review the entries for the order_info table:

smalljoins=# SELECT * FROM order_info;
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This will display the following output:

Figure 8.62: List of updated order information

Notice the additional row with order_id 1623.

7.	 Update the products table to account for the newly sold 10 Red Herrings using the 
update_stock function:

smalljoins=# SELECT update_stock();

The following figure shows the output of the preceding code:

Figure 8.63: Call updated_stock function to update

This function call will determine how many Red Herrings are left in inventory 
(after the sales of the 10 additional herrings) and will update the table accordingly.

8.	 Review the products table and notice the updated stock value for Red Herring:

smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

Figure 8.64: List of updated product values
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Updating the stock values manually will quickly become tedious. Let's create a 
trigger to do this automatically whenever a new order is placed.

9.	 Delete (DROP) the previous update_stock function. Before we can create a trigger, 
we must first adjust the update_stock function to return a trigger, which has the 
benefit of allowing for some simplified code:

smalljoins=# DROP FUNCTION update_stock;

10.	 Create a new update_stock function that returns a trigger. Note that the function 
definition is also contained within the Trigger.sql file for reference or direct 
loading into the database:

smalljoins=# CREATE FUNCTION update_stock() RETURNS TRIGGER AS $stock_
trigger$
smalljoins$# DECLARE stock_qty integer;
smalljoins$# BEGIN
smalljoins$# stock_qty := get_stock(NEW.product_code) – NEW.qty;
smalljoins$# UPDATE products SET stock=stock_qty WHERE product_code=NEW.
product_code;
smalljoins$# RETURN NEW;
smalljoins$# END; $stock_trigger$
smalljoins-# LANGUAGE PLPGSQL; 

Note that in this function definition, we are using the NEW keyword followed by the 
dot operator (.) and the product_code (NEW.product_code) and qty (NEW.qty) field 
names from the order_info table. The NEW keyword refers to the record that was 
recently inserted, updated, or deleted and provides a reference to the information 
within the record. 

In this exercise, we want the trigger to fire after the record is inserted into order_
info and thus the NEW reference will contain this information. So, we can use the 
get_stock function with NEW.product_code to get the currently available stock for 
the record and simply subtract the NEW.qty value from the order record.

11.	 Finally, let's create the trigger. We want the trigger to occur AFTER an INSERT 
operation on the order_info table. For each row, we want to execute the newly 
modified update_stock function to update the stock values in the product table:

smalljoins=# CREATE TRIGGER update_trigger
smalljoins-# AFTER INSERT ON order_info
smalljoins-# FOR EACH ROW
smalljoins-# EXECUTE PROCEDURE update_stock();



Functions and Triggers | 267

12.	 Now that we have created a new trigger, let's test it. Call the insert_order function 
to insert a new record into the order_info table:

smalljoins=# SELECT insert_order(4, 'MON123', 2);

The following figure shows the output of the preceding code:

Figure 8.65: Insert a new order to use the trigger

13.	 Look at the records from the order_info table:

smalljoins=# SELECT * FROM order_info;

This will display the following output:

Figure 8.66: Order information with an update from the trigger

14.	 Look at the records for the products table:

smalljoins=# SELECT * FROM products;

The following figure shows the output of the preceding code:

Figure 8.67: Updated product information from the trigger

Our trigger worked! We can see that the available stock for the Rubber Chicken + 
Pulley MON123 has been reduced from 7 to 5, in accordance with the quantity of 
the inserted order.
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In this exercise, we have successfully constructed a trigger to execute a secondary 
function following the insertion of a new record into the database.

Activity 16: Creating a Trigger to Track Average Purchases

Our goal here is to create a trigger for keeping track of the data that is updated. 
Let's say you are working as a data scientist for Monkey Islands, finest distributor 
of questionable and obscure items. The business is looking at trying a few different 
strategies to increase the number of items in each sale. To simplify your analysis, you 
decide to add a simple trigger that for each new order computes the average quantity in 
all the orders and puts the result in a new table along with the corresponding order_id. 
Here are the steps to follow:

1.	 Connect to the smalljoins database.

2.	 Create a new table called avg_qty_log that is composed of an order_id integer 
field and an avg_qty numeric field.

3.	 Create a function called avg_qty that does not take any arguments but returns a 
trigger. The function computes the average value for all order quantities (order_
info.qty) and inserts the average value, along with the most recent order_id, into 
avg_qty.

4.	 Create a trigger called avg_trigger that calls the avg_qty function AFTER each row 
is inserted into the order_info table.

5.	 Insert some new rows into the order_info table with quantities of 6, 7, and 8.

6.	 Look at the entries in avg_qty_log. Is the average quantity of each order 
increasing?

Expected output

Figure 8.68: Average order quantity over time

Note

The solution to the activity can be found on page 350.
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In this activity, we created a trigger for continuously keeping track of the data that is 
updated to analyze a product in the database.

Killing Queries

Sometimes, you have a lot of data, or perhaps insufficient hardware resources, and a 
query just runs for a very long time. In such a situation, you may need to stop the query, 
perhaps so you can implement an alternative query to get the information you need, but 
without the delayed response. In this section of the chapter, we are going to investigate 
how we can stop hanging, or, at least, hanging extremely long queries through the use 
of a secondary PostgreSQL interpreter. The following are some of the commands that 
we will use to kill queries:

•	 pg_sleep is a command that allows you to tell the SQL interpreter to essentially 
do nothing for the next period of time as defined by the input to the function in 
seconds.

•	 The pg_cancel_backend command causes the interpreter to end the query 
specified by the process ID (pid). The process will be terminated cleanly, allowing 
for appropriate resource cleanup. Clean termination should also be the first 
preference as it reduces the possibility of data corruption and damage to the 
database.

•	 The pg_terminate_background command stops an existing process but, as opposed 
to pg_cancel_background, forces the process to terminate without cleaning up any 
resources being used by the query. The query is immediately terminated, and data 
corruption may occur as a result.

Exercise 33: Canceling a Long Query

Our goal here is to learn how to cancel a long query to save time when we are stuck 
at query execution. You have been lucky enough to receive a large data store and you 
decided to run what you originally thought was a simple enough query to get some 
basic descriptive statistics of the data. For some reason, however, the query is taking 
an extremely long time and you are not even sure that it is running. You decide it is 
time to cancel the query, which means you would like to send a stop signal to the query 
but allow it sufficient time to clean up its resources gracefully. As there may be a wide 
variety of hardware available to us and the data required to induce a long query could 
be quite a lot to download, we will simulate a long query using the pg_sleep command. 
Here are the steps to follow.
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For this exercise, you will require two separate SQL interpreter sessions running in 
separate windows, as shown in the following figure: 

1.	 Launch two separate interpreters by running psql sqlda:

C:\> psql sqlda

This will display the following output in two separate windows:

Figure 8.69: Running multiple terminals

2.	 In the first terminal, execute the sleep command with a parameter of 1000 
seconds:

sqlda=# SELECT pg_sleep(1000);

After pressing Enter, you should notice that the cursor of the interpreter does not 
return:

Figure 8.70: Sleeping interpreter

3.	 In the second terminal, select the pid and query columns from the pg_stat_
activity table where state is active:

sqlda=# SELECT pid, query FROM pg_stat_activity WHERE state = 'active';

The following figure shows the output of the preceding code:

Figure 8.71: Active queries
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4.	 In the second terminal, pass the process ID of the pg_sleep query to the pg_
cancel_backend command to terminate the pg_sleep query with a graceful cleanup:

sqlda=# SELECT pg_cancel_backend(14131);

The following figure shows the output of the preceding code:

Figure 8.72: Successful cancelation of the query

5.	 Observe the first terminal and notice that the sleep command is no longer 
executing, as indicated by the return message:

Figure 8.73: Message indicating the cancelation of the query

This output screenshot shows an error as the query was canceled after the user's 
request.

In this exercise, we learned how to cancel a query that has taken a long time to execute.

Activity 17: Terminating a Long Query

Now our aim is to terminate a long query using the pg_terminate_background command 
just as we used pg_cancel_backend to stop the process. In this activity, we will consider 
the scenario as being one in which the cancelation of the query was not enough to stop 
the excessively long process. In such a situation, we require something a little heavier 
handed that, rather than requesting a clean termination of the process, forces a process 
to be terminated. Launch two separate SQL interpreters. Here are the steps to follow:

1.	 In the first terminal, execute the sleep command with a parameter of 1000 
seconds.

2.	 In the second terminal, identify the process ID of the sleep query.

3.	 Using the pid value, force the sleep command to terminate using the pg_
terminate_background command.

4.	 Verify in the first terminal that the sleep command has been terminated. Notice 
the message returned by the interpreter.
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Expected output

Figure 8.74: Terminated pg_sleep process

Note

The solution to the activity can be found on page 352.

In this activity, we terminated a long-running query using the pg_terminate_background 
command.

Summary
In this chapter, we have covered a wide variety of topics all designed to help us 
understand and improve the performance of our SQL queries. The chapter began 
with a thorough discussion of the query planner, including the EXPLAIN and ANALYZE 
statements, as well as various indexing methods. We discussed a number of different 
compromises and considerations that can be made to reduce the time taken to execute 
queries. We considered a number of scenarios where indexing methods would be of 
benefit and others where the query planner may disregard the index, thus reducing 
the efficiency of the query. We then moved on to the use of joins to efficiently combine 
information from a number of different tables and ended with an in-depth look at 
functions and automatic function calls through the use of triggers.

In the next chapter, we will combine all of the topics we have covered thus far in a final 
case study, applying our SQL knowledge and the scientific method in general, as we 
solve a real-world problem.







Learning Objectives

By the end of this chapter, you will be able to:

•	 Use the scientific method and critical thinking to glean insights about your data

•	 Solve real-world problems outside of those described within this book by using the skills 
that you have acquired

•	 Convert data and hypotheses into actionable tasks and insights

•	 Use the skills developed in this book to solve problems in your specific problem domain

In this chapter, we will examine an extensive and detailed real-world case study of sales data. 
This case study will not only demonstrate the processes used in SQL analysis to find solutions 
for actual problems but will also provide you with confidence and experience in solving such 
problems.

Using SQL  
to Uncover the  

Truth – a Case Study

9
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Introduction
Throughout SQL for Data Analytics, you have learned a range of new skills, including 
basic descriptive statistics, SQL commands and importing and exporting data in 
PostgreSQL, as well as more advanced methods, such as functions and triggers. In 
this final chapter of the book, we will combine these new skills with the scientific 
method and critical thinking to solve the real-world problem of understanding the 
cause of an unexpected drop in sales. This chapter provides a case study and will help 
you to develop confidence in applying your new SQL skillset to your own problem 
domains. To solve the problem presented in this use case, we will use the complete 
range of your newly developed skills, from using basic SQL searches to filter out the 
available information to aggregating and joining multiple sets of information and using 
windowing methods to group the data in a logical manner. By completing case studies 
such as this, you will refine one of the key tools in your data analysis toolkit, providing a 
boost to your data science career.

Case Study
Throughout this chapter, we will cover the following case study. The new ZoomZoom 
Bat Scooter is now available for sale exclusively through its website. Sales are looking 
good, but suddenly, pre-orders start plunging by 20% after a couple of weeks. What's 
going on? As the best data analyst at ZoomZoom, it's been assigned to you to figure it 
out.

Scientific Method

In this case study, we will be following the scientific method to help solve our problem, 
which, at its heart, is about testing guesses (or hypotheses) using objectively collected 
data. We can decompose the scientific method into the following key steps: 

1.	 Define the question to answer what caused the drop-in sales of the Bat Scooter 
after approximately 2 weeks.

2.	 Complete background research to gather sufficient information to propose an 
initial hypothesis for the event or phenomenon.

3.	 Construct a hypothesis to explain the event or answer the question.

4.	 Define and execute an objective experiment to test the hypothesis. In an ideal 
scenario, all aspects of the experiment should be controlled and fixed, except for 
the phenomenon that is being tested under the hypothesis.

5.	 Analyze the data collected during the experiment.

6.	 Report the result of the analysis, which will hopefully explain why there was a drop 
in the sale of Bat Scooters.
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It is to be noted that in this chapter, we are completing a post-hoc analysis of the data, 
that is, the event has happened, and all available data has been collected. Post-hoc data 
analysis is particularly useful when events have been recorded that cannot be repeated 
or when certain external factors cannot be controlled. It is with this data that we are 
able to perform our analysis, and, as such, we will extract information to support or 
refute our hypothesis. We will, however, be unable to definitively confirm or reject the 
hypothesis without practical experimentation. The question that will be the subject of 
this chapter and that we need to answer is this: why did the sales of the ZoomZoom Bat 
Scooter drop by approximately 20% after about 2 weeks?

So, let's start with the absolute basics.

Exercise 34: Preliminary Data Collection Using SQL Techniques

In this exercise, we will collect preliminary data using SQL techniques. We have been 
told that the pre-orders for the ZoomZoom Bat Scooter were good, but the orders 
suddenly dropped by 20%. So, when was production started on the scooter, and how 
much was it selling for? How does the Bat Scooter compare with other types of scooters 
in terms of price? The goal of this exercise is to answer these questions:

1.	 Load the sqlda database from the accompanying source code located at https://
github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets:

$ psql sqlda

2.	 List the model, base_msrp (MSRP: manufacturer's suggested retail price) and 
production_start_date fields within the product table for product types matching 
scooter:

sqlda=# SELECT model, base_msrp, production_start_date FROM products WHERE 
product_type='scooter';

The following table shows the details of all the products for the scooter product 
type:

Figure 9.1: Basic list of scooters with a base manufacturer suggesting  
a retail price and production date

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
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Looking at the results from the search, we can see that we have two scooter 
products with Bat in the name; Bat and Bat Limited Edition. The Bat Scooter, 
which started production on October 10, 2016, with a suggested retail price 
of $599.99; and the Bat Limited Edition Scooter, which started production 
approximately 4 months later, on February 15, 2017, at a price of $699.99.

Looking at the product information supplied, we can see that the Bat Scooter 
is somewhat unique from a price perspective, being the only scooter with a 
suggested retail price of $599.99. There are two others at $699.99 and one at 
$499.99.

Similarly, if we consider the production start date in isolation, the original Bat 
Scooter is again unique in that it is the only scooter starting production in the last 
quarter or even half of the year (date format: YYYY-MM-DD). All other scooters 
start production in the first half of the year, with only the Blade scooter starting 
production in June.

In order to use the sales information in conjunction with the product information 
available, we also need to get the product ID for each of the scooters.

3.	 Extract the model name and product IDs for the scooters available within the 
database. We will need this information to reconcile the product information with 
the available sales information:

sqlda=# SELECT model, product_id FROM products WHERE product_
type='scooter';

The query yields the product IDs shown in the following table:

Figure 9.2: Scooter product ID codes

4.	 Insert the results of this query into a new table called product_names:

sqlda=# SELECT model, product_id INTO product_names FROM products WHERE 
product_type='scooter';
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Inspect the contents of the product_names table shown in the following figure:

Figure 9.3: Contents of the new product_names table

As described in the output, we can see that the Bat Scooter lies between the price 
points of some of the other scooters and that it was also manufactured a lot later 
in the year compared to the others.

By completing this very preliminary data collection step, we have the information 
required to collect sales data on the Bat Scooter as well as other scooter products for 
comparison. While this exercise involved using the simplest SQL commands, it has 
already yielded some useful information.

This exercise has also demonstrated that even the simplest SQL commands can reveal 
useful information and that they should not be underestimated. In the next exercise, 
we will try to extract the sales information related to the reduction in sales of the Bat 
Scooter.

Exercise 35: Extracting the Sales Information

In this exercise, we will use a combination of simple SELECT statements, as well as 
aggregate and window functions, to examine the sales data. With the preliminary 
information at hand, we can use it to extract the Bat Scooter sales records and discover 
what is actually going on. We have a table, product_names, that contains both the model 
names and product IDs. We will need to combine this information with the sales 
records and extract only those for the Bat Scooter:

1.	 Load the sqlda database:

$ psql sqlda

2.	 List the available fields in the sqlda database:

sqlda=# \d
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The preceding query yields the following fields present in the database:

Figure 9.4: Structure of the sales table

We can see that we have references to customer and product IDs, as well as the 
transaction date, sales information, the sales channel, and the dealership ID.

3.	 Use an inner join on the product_id columns of both the product_names table and 
the sales table. From the result of the inner join, select the model, customer_id, 
sales_transaction_date, sales_amount, channel, and dealership_id, and store the 
values in a separate table called product_sales:

sqlda=# SELECT model, customer_id, sales_transaction_date, sales_amount, 
channel, dealership_id INTO products_sales FROM sales INNER JOIN product_
names ON sales.product_id=product_names.product_id;

The output of the preceding code can be seen in the next step.

Note

Throughout this chapter, we will be storing the results of queries and calculations 
in separate tables as this will allow you to look at the results of the individual steps 
in the analysis at any time. In a commercial/production setting, we would typically 
only store the end result in a separate table, depending upon the context of the 
problem being solved.

4.	 Look at the first five rows of this new table by using the following query:

sqlda=# SELECT * FROM products_sales LIMIT 5;
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The following table lists the top five customers who made a purchase. It shows the 
sale amount and the transaction details, such as the date and time:

Figure 9.5: The combined product sales table

5.	 Select all the information from the product_sales table that is available for the Bat 
Scooter and order the sales information by sales_transaction_date in ascending 
order. By selecting the data in this way, we can look at the first few days of the 
sales records in detail:

sqlda=# SELECT * FROM products_sales WHERE model='Bat' ORDER BY sales_
transaction_date;

The preceding query generates the following output:

Figure 9.6: Ordered sales records
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6.	 Count the number of records available by using the following query:

sqlda=# SELECT COUNT(model) FROM products_sales WHERE model='Bat';

The model count for the 'Bat' model is as shown here:

Figure 9.7: Count of the number of sales records

So, we have 7328 sales, beginning October 10, 2016. Check the date of the final 
sales record by performing the next step.

7.	 Determine the last sale date for the Bat Scooter by selecting the maximum (using 
the MAX function) for sales_transaction_date:

sqlda=# SELECT MAX(sales_transaction_date) FROM products_sales WHERE 
model='Bat';

The last sale date is shown here:

Figure 9.8: Last sale date

The last sale in the database occurred on May 31, 2019.

8.	 Collect the daily sales volume for the Bat Scooter and place it in a new table called 
bat_sales to confirm the information provided by the sales team stating that sales 
dropped by 20% after the first 2 weeks: 

sqlda=# SELECT * INTO bat_sales FROM products_sales WHERE model='Bat' 
ORDER BY sales_transaction_date;

9.	 Remove the time information to allow tracking of sales by date, since, at this stage, 
we are not interested in the time at which each sale occurred. To do so, run the 
following query:

sqlda=# UPDATE bat_sales SET sales_transaction_date=DATE(sales_
transaction_date);

10.	 Display the first five records of bat_sales ordered by sales_transaction_date:

sqlda=# SELECT * FROM bat_sales ORDER BY sales_transaction_date LIMIT 5;
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The following is the output of the preceding code:

Figure 9.9: First five records of Bat Scooter sales

11.	 Create a new table (bat_sales_daily) containing the sales transaction dates and a 
daily count of total sales:

sqlda=# SELECT sales_transaction_date, COUNT(sales_transaction_date) INTO 
bat_sales_daily FROM bat_sales GROUP BY sales_transaction_date ORDER BY 
sales_transaction_date;

12.	 Examine the first 22 records (a little over 3 weeks), as sales were reported to have 
dropped after approximately the first 2 weeks:

sqlda=# SELECT * FROM bat_sales_daily LIMIT 22;

This will display the following output:

Figure 9.10: First 3 weeks of sales
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We can see a drop-in sales after October 20, as there are 7 days in the first 11 rows 
that record double-digit sales, and none over the next 11 days.

At this stage, we can confirm that there has been a drop off in sales, although we are yet 
to quantify precisely the extent of the reduction or the reason for the drop off in sales.

Activity 18: Quantifying the Sales Drop

In this activity, we will use our knowledge of the windowing methods that we learned in 
Chapter 5, Window Functions for Data Analysis. In the previous exercise, we identified 
the occurrence of the sales drop as being approximately 10 days after launch. Here, we 
will try to quantify the drop off in sales for the Bat Scooter.

Perform the following steps to complete the activity:

1.	 Load the sqlda database from the accompanying source code located at https://
github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets.

2.	 Using the OVER and ORDER BY statements, compute the daily cumulative sum of 
sales. This provides us with a discrete count of sales over time on a daily basis. 
Insert the results into a new table called bat_sales_growth.

3.	 Compute a 7-day lag of the sum column, and then insert all the columns of bat_
sales_daily and the new lag column into a new table, bat_sales_daily_delay. 
This lag column indicates what sales were like 1 week prior to the given record, 
allowing us to compare sales with the previous week.

4.	 Inspect the first 15 rows of bat_sales_growth.

5.	 Compute the sales growth as a percentage, comparing the current sales volume 
to that of 1 week prior. Insert the resulting table into a new table called bat_sales_
delay_vol.

6.	 Compare the first 22 values of the bat_sales_delay_vol table to ascertain a sales 
drop.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
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Expected Output

Figure 9.11: Relative sales volume of the Bat Scooter over 3 weeks

Note

The solution to the activity can be found on page 354.

While the count and cumulative sum columns are reasonably straightforward, why do 
we need the lag and volume columns? This is because we are looking for drops in sales 
growth over the first couple of weeks, hence, we compare the daily sum of sales to the 
same values 7 days earlier (the lag). By subtracting the sum and lag values and dividing 
by the lag, we obtain the volume value and can determine sales growth compared to the 
previous week.
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Notice that the sales volume on October 17 is 700% above that of the launch date of 
October 10. By October 22, the volume is over double that of the week prior. As time 
passes, this relative difference begins to decrease dramatically. By the end of October, 
the volume is 28% higher than the week prior. At this stage, we have observed and 
confirmed the presence of a reduction in sales growth after the first 2 weeks. The next 
stage is to attempt to explain the causes of the reduction.

Exercise 36: Launch Timing Analysis

In this exercise, we will try to identify the causes of a sales drop. Now that we have 
confirmed the presence of the sales growth drop, we will try to explain the cause of the 
event. We will test the hypothesis that the timing of the scooter launch attributed to 
the reduction in sales. Remember, in Exercise 34, Preliminary Data Collection Using SQL 
Techniques, that the ZoomZoom Bat Scooter launched on October 10, 2016. Observe the 
following steps to complete the exercise:

1.	 Load the sqlda database:

$ psql sqlda

2.	 Examine the other products in the database. In order to determine whether the 
launch date attributed to the sales drop, we need to compare the ZoomZoom 
Bat Scooter to other scooter products according to the launch date. Execute the 
following query to check the launch dates:

sqlda=# SELECT * FROM products;

The following figure shows the launch dates for all the products:

Figure 9.12: Products with launch dates

All the other products launched before July, compared to the Bat Scooter, which 
launched in October.
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3.	 List all scooters from the products table, as we are only interested in comparing 
scooters:

sqlda=# SELECT * FROM products WHERE product_type='scooter'; 

The following table shows all the information for products with the product type 
of scooter:

Figure 9.13: Scooter product launch dates

To test the hypothesis that the time of year had an impact on sales performance, 
we require a scooter model to use as the control or reference group. In an ideal 
world, we could launch the ZoomZoom Bat Scooter in a different location or 
region, for example, but just at a different time, and then compare the two. 
However, we cannot do this here. Instead, we will choose a similar scooter 
launched at a different time. There are several different options in the product 
database, each with its own similarities and differences to the experimental 
group (ZoomZoom Bat Scooter). In our opinion, the Bat Limited Edition Scooter is 
suitable for comparison (the control group). It is slightly more expensive, but it was 
launched only 4 months after the Bat Scooter. Looking at its name, the Bat Limited 
Edition Scooter seems to share most of the same features, with a number of extras 
given that it's a "limited edition."

4.	 Select the first five rows of the sales database:

sqlda=# SELECT * FROM sales LIMIT 5;

The sales information for the first five customers is as follows:

Figure 9.14: First five rows of sales data
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5.	 Select the model and sales_transaction_date columns from both the products and 
sales tables for the Bat Limited Edition Scooter. Store the results in a table, bat_
ltd_sales, ordered by the sales_transaction_date column, from the earliest date 
to the latest:

sqlda=# SELECT products.model, sales.sales_transaction_date INTO bat_ltd_
sales FROM sales INNER JOIN products ON sales.product_id=products.product_
id WHERE sales.product_id=8 ORDER BY sales.sales_transaction_date;

6.	 Select the first five lines of bat_ltd_sales, using the following query:

sqlda=# SELECT * FROM bat_ltd_sales LIMIT 5;

The following table shows the transaction details for the first five entries of Bat 
Limited Edition:

Figure 9.15: First five sales of the Bat Limited Edition Scooter

7.	 Calculate the total number of sales for Bat Limited Edition. We can check this by 
using the COUNT function:

sqlda=# SELECT COUNT(model) FROM bat_ltd_sales;

The total sales count can be seen in the following figure:

Figure 9.16: Count of Bat Limited Edition sales

This is compared to the original Bat Scooter, which sold 7,328 items.

8.	 Check the transaction details of the last Bat Limited Edition sale. We can check 
this by using the MAX function:

sqlda=# SELECT MAX(sales_transaction_date) FROM bat_ltd_sales;
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The transaction details of the last Bat Limited Edition product are as follows:

Figure 9.17: Last date (MAX) of the Bat Limited Edition sale

9.	 Adjust the table to cast the transaction date column as a date, discarding the time 
information. As with the original Bat Scooter, we are only interested in the date of 
the sale, not the date and time of the sale. Write the following query:

sqlda=# ALTER TABLE bat_ltd_sales ALTER COLUMN sales_transaction_date TYPE 
date;

10.	 Again, select the first five records of bat_ltd_sales:

sqlda=# SELECT * FROM bat_ltd_sales LIMIT 5;

The following table shows the first five records of bat_ltd_sales:

Figure 9.18: Select the first five Bat Limited Edition sales by date

11.	 In a similar manner to the standard Bat Scooter, create a count of sales on a daily 
basis. Insert the results into the bat_ltd_sales_count table by using the following 
query:

sqlda=# SELECT sales_transaction_date, count(sales_transaction_date) INTO 
bat_ltd_sales_count FROM bat_ltd_sales GROUP BY sales_transaction_date 
ORDER BY sales_transaction_date;

12.	 List the sales count of all the Bat Limited products using the following query:

sqlda=# SELECT * FROM bat_ltd_sales_count;
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The sales count is shown in the following figure:

 

Figure 9.19: Bat Limited Edition daily sales

13.	 Compute the cumulative sum of the daily sales figures and insert the resulting 
table into bat_ltd_sales_growth:

sqlda=# SELECT *, sum(count) OVER (ORDER BY sales_transaction_date) INTO 
bat_ltd_sales_growth FROM bat_ltd_sales_count;

14.	 Select the first 22 days of sales records from bat_ltd_sales_growth:

sqlda=# SELECT * FROM bat_ltd_sales_growth LIMIT 22;

The following table displays the first 22 records of sales growth:

Figure 9.20: Bat Limited Edition sales – cumulative sum
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15.	 Compare this sales record with the one for the original Bat Scooter sales, as shown 
in the following code:

sqlda=# SELECT * FROM bat_sales_growth LIMIT 22;

The following table shows the sales details for the first 22 records of the bat_
sales_growth table:

Figure 9.21: Bat Scooter cumulative sales for 22 rows

Sales of the limited-edition scooter did not reach double digits during the first 
22 days, nor did the daily volume of sales fluctuate as much. In keeping with the 
overall sales figure, the limited edition sold 64 fewer units over the first 22 days.

16.	 Compute the 7-day lag function for the sum column and insert the results into the 
bat_ltd_sales_delay table:

sqlda=# SELECT *, lag(sum , 7) OVER (ORDER BY sales_transaction_date) INTO 
bat_ltd_sales_delay FROM bat_ltd_sales_growth;
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17.	 Compute the sales growth for bat_ltd_sales_delay in a similar manner to the 
exercise completed in Activity 18, Quantifying the Sales Drop. Label the column for 
the results of this calculation as volume and store the resulting table in bat_ltd_
sales_vol:

sqlda=# SELECT *, (sum-lag)/lag AS volume INTO bat_ltd_sales_vol FROM bat_
ltd_sales_delay;

18.	 Look at the first 22 records of sales in bat_ltd_sales_vol:

sqlda=# SELECT * FROM bat-ltd_sales_vol LIMIT 22;

The sales volume can be seen in the following figure:

Figure 9.22: Bat Scooter cumulative sales showing volume

Looking at the volume column in the preceding diagram, we can again see that 
the sales growth is more consistent than the original Bat Scooter. The growth 
within the first week is less than that of the original model, but it is sustained 
over a longer period. After 22 days of sales, the sales growth of the limited-edition 
scooter is 65% compared to the previous week, as compared with the 28% growth 
identified in the second activity of the chapter.



Case Study | 293

At this stage, we have collected data from two similar products launched at different 
time periods and found some differences in the trajectory of the sales growth over the 
first 3 weeks of sales. In a professional setting, we may also consider employing more 
sophisticated statistical comparison methods, such as tests for differences of mean, 
variance, survival analysis, or other techniques. These methods lie outside the scope of 
this book and, as such, limited comparative methods will be used.

While we have shown there to be a difference in sales between the two Bat Scooters, 
we also cannot rule out the fact that the sales differences can be attributed to the 
difference in the sales price of the two scooters, with the limited-edition scooter being 
$100 more expensive. In the next activity, we will compare the sales of the Bat Scooter 
to the 2013 Lemon, which is $100 cheaper, was launched 3 years prior, is no longer in 
production, and started production in the first half of the calendar year.

Activity 19: Analyzing the Difference in the Sales Price Hypothesis

In this activity, we are going to investigate the hypothesis that the reduction in 
sales growth can be attributed to the price point of the Bat Scooter. Previously, we 
considered the launch date. However, there could be another factor – the sales price 
included. If we consider the product list of scooters shown in Figure 9.23, and exclude 
the Bat model scooter, we can see that there are two price categories, $699.99 and 
above, or $499.99 and below. The Bat Scooter sits exactly between these two groups; 
perhaps the reduction in sales growth can be attributed to the different pricing model. 
In this activity, we will test this hypothesis by comparing Bat sales to the 2013 Lemon:

Figure 9.23: List of scooter models

The following are the steps to perform:

1.	 Load the sqlda database from the accompanying source code located at https://
github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets.

2.	 Select the sales_transaction_date column from the year 2013 for Lemon model 
sales and insert the column into a table called lemon_sales.

3.	 Count the sales records available for 2013 for the Lemon model.

4.	 Display the latest sales_transaction_date column.

5.	 Convert the sales_transaction_date column to a date type.

https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
https://github.com/TrainingByPackt/SQL-for-Data-Analytics/tree/master/Datasets
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6.	 Count the number of sales per day within the lemon_sales table and insert the data 
into a table called lemon_sales_count.

7.	 Calculate the cumulative sum of sales and insert the corresponding table into a 
new table labeled lemon_sales_sum.

8.	 Compute the 7-day lag function on the sum column and save the result to lemon_
sales_delay.

9.	 Calculate the growth rate using the data from lemon_sales_delay and store the 
resulting table in lemon_sales_growth.

10.	 Inspect the first 22 records of the lemon_sales_growth table by examining the 
volume data.

Expected Output

Figure 9.24: Sales growth of the Lemon Scooter

Note

The solution to the activity can be found on page 356.
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Now that we have collected data to test the two hypotheses of timing and cost, what 
observations can we make and what conclusions can we draw? The first observation 
that we can make is regarding the total volume of sales for the three different scooter 
products. The Lemon Scooter, over its production life cycle of 4.5 years, sold 16,558 
units, while the two Bat Scooters, the Original and Limited Edition models, sold 7,328 
and 5,803 units, respectively, and are still currently in production, with the Bat Scooter 
launching about 4 months earlier and with approximately 2.5 years of sales data 
available. Looking at the sales growth of the three different scooters, we can also make 
a few different observations:

•	 The original Bat Scooter, which launched in October at a price of $599.99, 
experienced a 700% sales growth in its second week of production and finished 
the first 22 days with 28% growth and a sales figure of 160 units.

•	 The Bat Limited Edition Scooter, which launched in February at a price of $699.99, 
experienced 450% growth at the start of its second week of production and 
finished with 96 sales and 66% growth over the first 22 days.

•	 The 2013 Lemon Scooter, which launched in May at a price of $499.99, 
experienced 830% growth in the second week of production and ended its first 22 
days with 141 sales and 55% growth.

Based on this information, we can make a number of different conclusions:

•	 The initial growth rate starting in the second week of sales correlates to the cost 
of the scooter. As the cost increased to $699.99, the initial growth rate dropped 
from 830% to 450%.

•	 The number of units sold in the first 22 days does not directly correlate to the 
cost. The $599.99 Bat Scooter sold more than the 2013 Lemon Scooter in that first 
period despite the price difference.

•	 There is some evidence to suggest that the reduction in sales can be attributed 
to seasonal variations given the significant reduction in growth and the fact that 
the original Bat Scooter is the only one released in October. So far, the evidence 
suggests that the drop can be attributed to the difference in launch timing.

Before we draw the conclusion that the difference can be attributed to seasonal 
variations and launch timing, let's ensure that we have extensively tested a range of 
possibilities. Perhaps marketing work, such as email campaigns, that is, when the emails 
were sent, and the frequency with which the emails were opened, made a difference.
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Now that we have considered both the launch timing and the suggested retail price 
of the scooter as a possible cause of the reduction in sales, we will direct our efforts 
to other potential causes, such as the rate of opening of marketing emails. Does the 
marketing email opening rate have an effect on sales growth throughout the first 3 
weeks? We will find this out in our next exercise.

Exercise 37: Analyzing Sales Growth by Email Opening Rate

In this exercise, we will analyze the sales growth using the email opening rate. To 
investigate the hypothesis that a decrease in the rate of opening emails impacted 
the Bat Scooter sales rate, we will again select the Bat and Lemon Scooters and will 
compare the email opening rate.

Perform the following steps to complete the exercise:

1.	 Load the sqlda database:

$ psql sqlda

2.	 Firstly, look at the emails table to see what information is available. Select the first 
five rows of the emails table:

sqlda=# SELECT * FROM emails LIMIT 5;

The following table displays the email information for the first five rows:

Figure 9.25: Sales growth of the Lemon Scooter

To investigate our hypothesis, we need to know whether an email was opened, and 
when it was opened, as well as who the customer was who opened the email and 
whether that customer purchased a scooter. If the email marketing campaign was 
successful in maintaining the sales growth rate, we would expect a customer to 
open an email soon before a scooter was purchased.

The period in which the emails were sent, as well as the ID of customers who 
received and opened an email, can help us to determine whether a customer who 
made a sale may have been encouraged to do so following the receipt of an email. 
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3.	 To determine the hypothesis, we need to collect the customer_id column from 
both the emails table and the bat_sales table for the Bat Scooter, the opened, 
sent_date, opened_date, and email_subject columns from emails table, as well as 
the sales_transaction_date column from the bat_sales table. As we only want 
the email records of customers who purchased a Bat Scooter, we will join the 
customer_id column in both tables. Then, insert the results into a new table – bat_
emails:

sqlda=# SELECT emails.email_subject, emails.customer_id, emails.opened, 
emails.sent_date, emails.opened_date, bat_sales.sales_transaction_date 
INTO bat_emails FROM emails INNER JOIN bat_sales ON bat_sales.customer_
id=emails.customer_id ORDER BY bat_sales.sales_transaction_date;

4.	 Select the first 10 rows of the bat_emails table, ordering the results by sales_
transaction_date:

sqlda=# SELECT * FROM bat_emails LIMIT 10;

The following table shows the first 10 rows of the bat_emails table ordered by 
sales_transaction_date:

Figure 9.26: Email and sales information joined on customer_id

We can see here that there are several emails unopened, over a range of sent 
dates, and that some customers have received multiple emails. Looking at the 
subjects of the emails, some of them don't seem related to the Zoom scooters at 
all.

5.	 Select all rows where the sent_date email predates the sales_transaction_date 
column, order by customer_id, and limit the output to the first 22 rows. This will 
help us to know which emails were sent to each customer before they purchased 
their scooter. Write the following query to do so:

sqlda=# SELECT * FROM bat_emails WHERE sent_date < sales_transaction_date 
ORDER BY customer_id LIMIT 22;
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The following table lists the emails sent to the customers before the sales_
transaction_date column:

Figure 9.27: Emails sent to customers before the sale transaction date

6.	 Delete the rows of the bat_emails table where emails were sent more than 6 
months prior to production. As we can see, there are some emails that were sent 
years before the transaction date. We can easily remove some of the unwanted 
emails by removing those sent before the Bat Scooter was in production. From the 
products table, the production start date for the Bat Scooter is October 10, 2016: 

sqlda=# DELETE FROM bat_emails WHERE sent_date < '2016-04-10';

Note

In this exercise, we are removing information that we no longer require from an 
existing table. This differs from the previous exercises, where we created multiple 
tables each with slightly different information from other. The technique you apply 
will differ depending upon the requirements of the problem being solved; do you 
require a traceable record of analysis, or is efficiency and reduced storage key?

7.	 Delete the rows where the sent date is after the purchase date, as they are not 
relevant to the sale:

sqlda=# DELETE FROM bat_emails WHERE sent_date > sales_transaction_date;
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8.	 Delete those rows where the difference between the transaction date and the sent 
date exceeds 30, as we also only want those emails that were sent shortly before 
the scooter purchase. An email 1 year beforehand is probably unlikely to influence 
a purchasing decision, but one closer to the purchase date may have influenced 
the sales decision. We will set a limit of 1 month (30 days) before the purchase. 
Write the following query to do so:

sqlda=# DELETE FROM bat_emails WHERE (sales_transaction_date-sent_date) > 
'30 days';

9.	 Examine the first 22 rows again ordered by customer_id by running the following 
query:

sqlda=# SELECT * FROM bat_emails ORDER BY customer_id LIMIT 22;

The following table shows the emails where the difference between the 
transaction date and the sent date is less than 30:

Figure 9.28: Emails sent close to the date of sale

At this stage, we have reasonably filtered the available data based on the dates the 
email was sent and opened. Looking at the preceding email_subject column, it also 
appears that there are a few emails unrelated to the Bat Scooter, for example, 25% 
of all EVs. It's a Christmas Miracle! and Black Friday. Green Cars. These emails 
seem more related to electric car production instead of scooters, and so we can 
remove them from our analysis.
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10.	 Select the distinct value from the email_subject column to get a list of the 
different emails sent to the customers:

sqlda=# SELECT DISTINCT(email_subject) FROM bat_emails;

The following table shows a list of distinct email subjects:

Figure 9.29: Unique email subjects sent to potential customers of the Bat Scooter

11.	 Delete all records that have Black Friday in the email subject. These emails do not 
appear relevant to the sale of the Bat Scooter:

sqlda=# DELETE FROM bat_emails WHERE position('Black Friday' in email_
subject)>0;

Note

The position function in the preceding example is used to find any records 
where the Black Friday string is at the first character in the mail or more in 
email_structure. Thus, we are deleting any rows where Black Friday is in the 
email subject. For more information on PostgreSQL, refer to the documentation 
regarding string functions: https://www.postgresql.org/docs/current/functions-
string.html.

12.	 Delete all rows where 25% off all EVs. It's a Christmas Miracle! and A New Year, 
And Some New EVs can be found in the email_subject:

sqlda=# DELETE FROM bat_emails WHERE position('25% off all EV' in email_
subject)>0;
sqlda=# DELETE FROM bat_emails WHERE position('Some New EV' in email_
subject)>0;

13.	 At this stage, we have our final dataset of emails sent to customers. Count the 
number of rows that are left in the sample by writing the following query:

sqlda=# SELECT count(sales_transaction_date) FROM bat_emails;

https://www.postgresql.org/docs/current/functions-string.html
https://www.postgresql.org/docs/current/functions-string.html
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We can see that 401 rows are left in the sample:

Figure 9.30: Count of the final Bat Scooter email dataset

14.	 We will now compute the percentage of emails that were opened relative to sales. 
Count the emails that were opened by writing the following query:

sqlda=# SELECT count(opened) FROM bat_emails WHERE opened='t'

We can see that 98 emails were opened:

Figure 9.31: Count of opened Bat Scooter campaign emails

15.	 Count the customers who received emails and made a purchase. We will 
determine this by counting the number of unique (or distinct) customers that are 
in the bat_emails table:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM bat_emails;

We can see that 396 customers who received an email made a purchase:

Figure 9.32: Count of unique customers who received a Bat Scooter campaign email

16.	 Count the unique (or distinct) customers who made a purchase by writing the 
following query:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM bat_sales;

Following is the output of the preceding code:

Figure 9.33: Count of unique customers
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17.	 Calculate the percentage of customers who purchased a Bat Scooter after 
receiving an email:

sqlda=# SELECT 396.0/6659.0 AS email_rate;

The output of the preceding query is displayed as follows:

Figure 9.34: Percentage of customers who received an email

Note

In the preceding calculation, you can see that we included a decimal place in the 
figures, for example, 396.0 instead of a simple integer value (396). This is because 
the resulting value will be represented as less than 1 percentage point. If we 
excluded these decimal places, the SQL server would have completed the division 
operation as integers and the result would be 0.

Just under 6% of customers who made a purchase received an email regarding 
the Bat Scooter. Since 18% of customers who received an email made a purchase, 
there is a strong argument to be made that actively increasing the size of the 
customer base who receive marketing emails could increase Bat Scooter sales.

18.	 Limit the scope of our data to be all sales prior to November 1, 2016 and put the 
data in a new table called bat_emails_threewks. So far, we have examined the email 
opening rate throughout all available data for the Bat Scooter. Check the rate 
throughout for the first 3 weeks, where we saw a reduction in sales:

sqlda=# SELECT * INTO bat_emails_threewks FROM bat_emails WHERE sales_
transaction_date < '2016-11-01';

19.	 Now, count the number of emails opened during this period:

sqlda=# SELECT COUNT(opened) FROM bat_emails_threewks;

We can see that we have sent 82 emails during this period:

Figure 9.35: Count of emails opened in the first 3 weeks
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20.	Now, count the number of emails opened in the first 3 weeks:

sqlda=# SELECT COUNT(opened) FROM bat_emails_threewks WHERE opened='t';

The following is the output of the preceding code:

Figure 9.36: Count of emails opened

We can see that 15 emails were opened in the first 3 weeks.

21.	 Count the number of customers who received emails during the first 3 weeks of 
sales and who then made a purchase by using the following query:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM bat_emails_threewks;

We can see that 82 customers received emails during the first 3 weeks:

Figure 9.37: Customers who made a purchase in the first 3 weeks

22.	Calculate the percentage of customers who opened emails pertaining to the Bat 
Scooter and then made a purchase in the first 3 weeks by using the following 
query:

sqlda=# SELECT 15.0/82.0 AS sale_rate;

The following table shows the calculated percentage:

Figure 9.38: Percentage of customers in the first 3 weeks who opened emails

Approximately 18% of customers who received an email about the Bat Scooter 
made a purchase in the first 3 weeks. This is consistent with the rate for all 
available data for the Bat Scooter.
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23.	Calculate how many unique customers we have in total throughout the first 3 
weeks. This information is useful context when considering the percentages, 
we just calculated. 3 sales out of 4 equate to 75% but, in this situation, we 
would prefer a lower rate of the opening but for a much larger customer base. 
Information on larger customer bases is generally more useful as it is typically 
more representative of the entire customer base, rather than a small sample of it. 
We already know that 82 customers received emails:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM bat_sales WHERE sales_
transaction_date < '2016-11-01';

The following output reflects 160 customers where the transaction took place 
before November 1, 2016:

Figure 9.39: Number of distinct customers from bat_sales

There were 160 customers in the first 3 weeks, 82 of whom received emails, which 
is slightly over 50% of customers. This is much more than 6% of customers over 
the entire period of availability of the scooter.

Now that we have examined the performance of the email marketing campaign for the 
Bat Scooter, we need a control or comparison group to establish whether the results 
were consistent with that of other products. Without a group to compare against, we 
simply do not know whether the email campaign of the Bat Scooter was good, bad, or 
neither. We will perform the next exercise to investigate performance.
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Exercise 38: Analyzing the Performance of the Email Marketing Campaign

In this exercise, we will investigate the performance of the email marketing campaign 
for the Lemon Scooter to allow for a comparison with the Bat Scooter. Our hypothesis 
is that if the email marketing campaign performance of the Bat Scooter is consistent 
with another, such as the 2013 Lemon, then the reduction in sales cannot be attributed 
to differences in the email campaigns.

Perform the following steps to complete the exercise:

1.	 Load the sqlda database:

$ psql sqlda

2.	 Drop the existing lemon_sales table:

sqlda=# DROP TABLE lemon_sales;

3.	 The 2013 Lemon Scooter is product_id = 3. Select customer_id and sales_
transaction_date from the sales table for the 2013 Lemon Scooter. Insert the 
information into a table called lemon_sales:

sqlda=# SELECT customer_id, sales_transaction_date INTO lemon_sales FROM 
sales WHERE product_id=3;

4.	 Select all information from the emails database for customers who purchased a 
2013 Lemon Scooter. Place the information in a new table called lemon_emails:

sqlda=# SELECT emails.customer_id, emails.email_subject, emails.opened, 
emails.sent_date, emails.opened_date, lemon_sales.sales_transaction_date 
INTO lemon_emails FROM emails INNER JOIN lemon_sales ON emails.customer_
id=lemon_sales.customer_id;

5.	 Remove all emails sent before the start of production of the 2013 Lemon Scooter. 
For this, we first require the date when production started:

sqlda=# SELECT production_start_date FROM products Where product_id=3;

The following table shows the production_start_date column:

Figure 9.40: Production start date of the Lemon Scooter
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Now, delete the emails that were sent before the start of production of the 2013 
Lemon Scooter:

sqlda=# DELETE FROM lemon_emails WHERE sent_date < '2013-05-01';

6.	 Remove all rows where the sent date occurred after the sales_transaction_date 
column:

sqlda=# DELETE FROM lemon_emails WHERE sent_date > sales_transaction_date;

7.	 Remove all rows where the sent date occurred more than 30 days before the 
sales_transaction_date column:

sqlda=# DELETE FROM lemon_emails WHERE (sales_transaction_date - sent_
date) > '30 days';

8.	 Remove all rows from lemon_emails where the email subject is not related to a 
Lemon Scooter. Before doing this, we will search for all distinct emails:

sqlda=# SELECT DISTINCT(email_subject) FROM lemon_emails;

The following table shows the distinct email subjects:

Figure 9.41: Lemon Scooter campaign emails sent

Now, delete the email subject not related to the Lemon Scooter using the DELETE 
command:

sqlda=# DELETE FROM lemon_emails WHERE POSITION('25% off all EVs.' in 
email_subject)>0;
sqlda=# DELETE FROM lemon_emails WHERE POSITION('Like a Bat out of Heaven' 
in email_subject)>0;
sqlda=# DELETE FROM lemon_emails WHERE POSITION('Save the Planet' in 
email_subject)>0;
sqlda=# DELETE FROM lemon_emails WHERE POSITION('An Electric Car' in 
email_subject)>0;
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sqlda=# DELETE FROM lemon_emails WHERE POSITION('We cut you a deal' in 
email_subject)>0;
sqlda=# DELETE FROM lemon_emails WHERE POSITION('Black Friday. Green 
Cars.' in email_subject)>0;
sqlda=# DELETE FROM lemon_emails WHERE POSITION('Zoom' in email_
subject)>0;

9.	 Now, check how many emails of lemon_scooter customers were opened:

sqlda=# SELECT COUNT(opened) FROM lemon_emails WHERE opened='t';

We can see that 128 emails were opened:

Figure 9.42: Lemon Scooter campaign emails opened

10.	 List the number of customers who received emails and made a purchase:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM lemon_emails;

The following figure shows that 506 customers made a purchase after receiving 
emails:

Figure 9.43: Unique customers who purchased a Lemon Scooter

11.	 Calculate the percentage of customers who opened the received emails and made 
a purchase:

sqlda=# SELECT 128.0/506.0 AS email_rate;

We can see that 25% of customers opened the emails and made a purchase:

Figure 9.44: Lemon Scooter customer email rate
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12.	 Calculate the number of unique customers who made a purchase:

sqlda=# SELECT COUNT(DISTINCT(customer_id)) FROM lemon_sales;

We can see that 13854 customers made a purchase:

Figure 9.45: Count of unique Lemon Scooter customers

13.	 Calculate the percentage of customers who made a purchase having received an 
email. This will enable a comparison with the corresponding figure for the Bat 
Scooter:

sqlda=# SELECT 506.0/13854.0 AS email_sales;

The preceding calculation generates a 36% output:

Figure 9.46: Lemon Scooter customers who received an email

14.	 Select all records from lemon_emails where a sale occurred within the first 3 
weeks of the start of production. Store the results in a new table – lemon_emails_
threewks:

sqlda=# SELECT * INTO lemon_emails_threewks FROM lemon_emails WHERE sales_
transaction_date < '2013-06-01';

15.	 Count the number of emails that were made for Lemon Scooters in the first 3 
weeks:

sqlda=# SELECT COUNT(sales_transaction_date) FROM lemon_emails_threewks;

The following is the output of the preceding code:

Figure 9.47: Unique sales of the Lemon Scooter in the first 3 weeks
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There is a lot of interesting information here. We can see that 25% of customers 
who opened an email made a purchase, which is a lot higher than the 18% figure 
for the Bat Scooter. We have also calculated that just over 3.6% of customers who 
purchased a Lemon Scooter were sent an email, which is much lower than the 
almost 6% of Bat Scooter customers. The final interesting piece of information 
we can see is that none of the Lemon Scooter customers received an email during 
the first 3 weeks of product launch compared with the 82 Bat Scooter customers, 
which is approximately 50% of all customers in the first 3 weeks!

In this exercise, we investigated the performance of an email marketing campaign for 
the Lemon Scooter to allow for a comparison with the Bat Scooter using various SQL 
techniques.

Conclusions

Now that we have collected a range of information about the timing of the product 
launches, the sales prices of the products, and the marketing campaigns, we can make 
some conclusions regarding our hypotheses:

•	 In Exercise 36, Launch Timing Analysis, we gathered some evidence to suggest that 
launch timing could be related to the reduction in sales after the first 2 weeks, 
although this cannot be proven.

•	 There is a correlation between the initial sales rate and the sales price of the 
scooter, with a reduced-sales price trending with a high sales rate (Activity 19, 
Analyzing the Difference in the Sales Price Hypothesis).

•	 The number of units sold in the first 3 weeks does not directly correlate to the 
sale price of the product (Activity 19, Analyzing the Difference in the Sales Price 
Hypothesis).

•	 There is evidence to suggest that a successful marketing campaign could increase 
the initial sales rate, with an increased email opening rate trending with an 
increased sales rate (Exercise 37, Analyzing Sales Growth by Email Opening Rate). 
Similarly, an increase in the number of customers receiving email trends with 
increased sales (Exercise 38, Analyzing the Performance of the Email Marketing 
Campaign).

•	 The Bat Scooter sold more units in the first 3 weeks than the Lemon or Bat Limited 
Scooters (Activity 19, Analyzing the Difference in the Sales Price Hypothesis).
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In-Field Testing

At this stage, we have completed our post-hoc analysis (that is, data analysis completed 
after an event) and have evidence to support a couple of theories as to why the sales 
of the Bat Scooter dropped after the first 2 weeks. However, we cannot confirm these 
hypotheses to be true as we cannot isolate one from the other. This is where we need 
to turn to another tool in our toolkit: in-field testing. Precisely as the name suggests, 
in-field testing is testing hypotheses in the field, for instance, while a new product is 
being launched or existing sales are being made. One of the most common examples 
of in-field testing is A/B testing, whereby we randomly divide our users or customers 
into two groups, A and B, and provide them with a slightly modified experience or 
environment and observe the result. As an example, let's say we randomly assigned 
customers in group A to a new marketing campaign and customers in group B to the 
existing marketing campaign. We could then monitor sales and interactions to see 
whether one campaign was better than the other. Similarly, if we wanted to test the 
launch timing, we could launch in Northern California, for example, in early November, 
and Southern California in early December, and observe the differences.

The essence of in-field testing is that unless we test our post-hoc data analysis 
hypotheses, we will never know whether our hypothesis is true and, in order to test 
the hypothesis, we must only alter the conditions to be tested, for example, the launch 
date. To confirm our post-hoc analysis, we could recommend that the sales teams apply 
one or more of the following scenarios and monitor the sales records in real time to 
determine the cause of the reduction in sales:

•	 Release the next scooter product at different times of the year in two regions 
that have a similar climate and equivalent current sales record. This would help to 
determine whether launch timing had an effect.

•	 Release the next scooter product at the same time in regions with equivalent 
existing sales records at different price points and observe for differences in sales.

•	 Release the next scooter product at the same time and same price point in regions 
with equivalent existing sales records and apply two different email marketing 
campaigns. Track the customers who participated in each campaign and monitor 
the sales.
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Summary
Congratulations! You have just completed your first real-world data analysis problem 
using SQL. In this chapter, you developed the skills necessary to develop hypotheses 
for problems and systematically gather the data required to support or reject your 
hypothesis. You started this case study with a reasonably difficult problem of explaining 
an observed discrepancy in sales data and discovered two possible sources (launch 
timing and marketing campaign) for the difference while rejecting one alternative 
explanation (sales price). While being a required skill for any data analyst, being able to 
understand and apply the scientific method in our exploration of problems will allow 
you to be more effective and find interesting threads of investigation. In this chapter, 
you used the SQL skills developed throughout this book; from simple SELECT statements 
to aggregating complex datatypes as well as windowing methods. After completing this 
chapter, you will be able to continue and repeat this type of analysis in your own data 
analysis projects to help find actionable insights.
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Chapter 1: Understanding and Describing Data

Activity 1: Classifying a New Dataset

Solution

1.	 The unit of observation is a car purchase.

2.	 Date and Sales Amount are quantitative, while Make is qualitative.

3.	 While there could be many ways to convert Make into quantitative data, one 
commonly accepted method would be to map each of the Make types to a number. 
For instance, Ford could map to 1, Honda could map to 2, Mazda could map to 3, 
Toyota could map to 4, Mercedes could map to 5, and Chevy could map to 6.

Activity 2: Exploring Dealership Sales Data

Solution

1.	 Open Microsoft Excel to a blank workbook.

2.	 Go to the Data tab and click on From Text.

3.	 Find the path to the dealerships.csv file and click on OK.

4.	 Choose the Delimited option in the Text Import Wizard dialog box, and make sure 
to start the import at row 1. Now, click on Next.

5.	 Select the delimiter for your file. As this file is only one column, it has no 
delimiters, although CSVs traditionally use commas as delimiters (in future, use 
whatever is appropriate for your dataset). Now, click on Next.

6.	 Select General for the Column Data Format. Now, click on Finish.

7.	 For the dialog box asking Where you want to put the data?, select Existing Sheet, 
and leave what is in the textbox next to it as is. Now, click on OK. You should see 
something similar to the following diagram:
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Figure 1.33: The dealerships.csv file loaded

8.	 Histograms may vary a little bit depending on what parameters are chosen, but it 
should look similar to the following: 

Figure 1.34: A histogram showing the number of female employees
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9.	 Here, the mean sales are $171,603,750.13, and the median sales are $184,939,292.

10.	 The standard deviation of sales is $50,152,290.42.

11.	 The Boston, MA dealership is an outlier. This can be shown graphically or by using 
the IQR method.

12.	 You should get the following four quintiles:

13.	

Figure 1.35: Quintiles and their values

14.	 Removing the outlier of Boston, you should get a correlation coefficient of 0.55. 
This value implies that there is a strong correlation between the number of female 
employees and the sales of a dealership. While this may be evidence that more 
female employees lead to more revenue, it may also be a simple consequence of 
a third effect. In this case, larger dealerships have a larger number of employees 
in general, which also means that women will be at these locations as well. There 
may be other correlational interpretations as well.
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Chapter 2: The Basics of SQL for Analytics

Activity 3: Querying the customers Table Using Basic Keywords in a SELECT 

Query

Solution

1.	 Open your favorite SQL client and connect to the sqlda database. Examine the 
schema for the customers table from the schema dropdown. Notice the names 
of the columns, the same as we did in Exercise 6, Querying Salespeople, for the 
salespeople table.

2.	 Execute the following query to fetch customers in the state of Florida in 
alphabetical order:

SELECT email
FROM customers
WHERE state='FL'
ORDER BY email

The following is the output of the preceding code:

Figure 2.13: Emails of customers from Florida in alphabetical order
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3.	 Execute the following query to pull all the first names, last names, and email 
addresses for ZoomZoom customers in New York City in the state of New York. 
The customers would be ordered alphabetically by the last name followed by the 
first name:

SELECT first_name, last_name, email
FROM customers
WHERE city='New York City'
and state='NY'
ORDER BY last_name, first_name

The following is the output of the preceding code:

Figure 2.14: Details of customers from New York City in alphabetical order

4.	 Execute the following query to fetch all customers that have a phone number 
ordered by the date the customer was added to the database:

SELECT *
FROM customers
WHERE phone IS NOT NULL
ORDER BY date_added
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The following is the output of the preceding code:

Figure 2.15: Customers with a phone number ordered by the date  
the customer was added to the database

Activity 4: Marketing Operations

Solution

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Run the following query to create the table with New York City customers:

CREATE TABLE customers_nyc AS (
SELECT * FROM 
customers
where city='New York City'
and state='NY');

Figure 2.16: Table showing customers from New York City

3.	 Then, run the following query statement to delete users with the postal code 
10014:

DELETE FROM customers_nyc WHERE postal_code='10014';

4.	 Execute the following query to add the new event column:

ALTER TABLE customers_nyc ADD COLUMN event text;
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5.	 Update the customers_nyc table and set the event to thank-you party using the 
following query:

UPDATE customers_nyc
SET event = 'thank-you party';

Figure 2.17: The customers_nyc table with event set as 'thank-you party'

6.	 Now, we will delete the customers_nyc table as asked by the manager using DROP 
TABLE:

DROP TABLE customers_nyc;

This will delete the customers_nyc table from the database.
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Chapter 3: SQL for Data Preparation

Activity 5: Building a Sales Model Using SQL Techniques

Solution

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Follow the steps mentioned with the scenario and write the query for it. There are 
many approaches to this query, but one of these approaches could be:

SELECT 
c.*,
p.*,
COALESCE(s.dealership_id, -1),
CASE WHEN p.base_msrp - s.sales_amount >500 THEN 1 ELSE 0 END AS high_
savings 
FROM sales s
INNER JOIN customers c ON c.customer_id=s.customer_id
INNER JOIN products p ON p.product_id=s.product_id
LEFT JOIN dealerships d ON s.dealership_id = d.dealership_id;

3.	 The following is the output of the preceding code:

Figure 3.21: Building a sales model query

Thus, have the data to build a new model that will help the data science team to predict 
which customers are the best prospects for remarketing from the output generated.
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Chapter 4: Aggregate Functions for Data Analysis

Activity 6: Analyzing Sales Data Using Aggregate Functions

Solution

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the number of unit sales the company has achieved by using the COUNT 
function:

SELECT COUNT(*)
FROM sales;

You should get 37,711 sales.

3.	 Determine the total sales amount in dollars for each state; we can use the SUM 
aggregate function here:

SELECT c.state, SUM(sales_amount) as total_sales_amount
FROM sales s
INNER JOIN customers c ON c.customer_id=s.customer_id
GROUP BY 1
ORDER BY 1;

You will get the following output:

Figure 4.23: Total sales in dollars by US state
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4.	 Determine the top five dealerships in terms of most units sold, using the GROUP BY 
clause and set LIMIT as 5:

SELECT s.dealership_id, COUNT(*)
FROM sales s
WHERE channel='dealership'
GROUP BY 1
ORDER BY 2 DESC
LIMIT 5

You should get the following output:

Figure 4.24: Top five dealerships by units sold

5.	 Calculate the average sales amount for each channel, as seen in the sales table, 
and look at the average sales amount first by channel sales, then by product_id, and 
then by both together. This can be done using GROUPING SETS as follows:

SELECT s.channel, s.product_id, AVG(sales_amount) as avg_sales_amount
FROM sales s
GROUP BY 
GROUPING SETS(
(s.channel), (s.product_id),
(s.channel, s.product_id)
)
ORDER BY 1, 2
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You should get the following output:

Figure 4.25: Sales after the GROUPING SETS channel and product_id

From the preceding figure, we can see the channel and product ID of all the 
products as well as the sales amount generated by each product.

Using aggregates, you have unlocked patterns that will help your company understand 
how to make more revenue and make the company better overall.
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Chapter 5: Window Functions for Data Analysis

Activity 7: Analyzing Sales Using Window Frames and Window Functions

Solution

1.	 Open your favorite SQL client and connect to the sqlda database.

2.	 Calculate the total sales amount for all individual months in 2018 using the SUM 
function:

SELECT sales_transaction_date::DATE,
SUM(sales_amount) as total_sales_amount
FROM sales
WHERE sales_transaction_date>='2018-01-01'
AND sales_transaction_date<'2019-01-01'
GROUP BY 1
ORDER BY 1;

The following is the output of the preceding code:

Figure 5.15: Total sales amount by month
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3.	 Now, calculate the rolling 30-day average for the daily number of sales deals, using 
a window frame:

WITH daily_deals as (
SELECT sales_transaction_date::DATE,
COUNT(*) as total_deals
FROM sales
GROUP BY 1
),

moving_average_calculation_30 AS (
SELECT sales_transaction_date, total_deals,
AVG(total_deals) OVER (ORDER BY sales_transaction_date ROWS BETWEEN 30 
PRECEDING and CURRENT ROW) AS deals_moving_average,
ROW_NUMBER() OVER (ORDER BY sales_transaction_date) as row_number
FROM daily_deals
ORDER BY 1)

SELECT sales_transaction_date,
CASE WHEN row_number>=30 THEN deals_moving_average ELSE NULL END
   AS deals_moving_average_30
FROM moving_average_calculation_30
WHERE sales_transaction_date>='2018-01-01'
AND sales_transaction_date<'2019-01-01';

The following is the output of the preceding code:

Figure 5.16: Rolling 30-day average of sales
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4.	 Next, calculate what decile each dealership would be in compared to other 
dealerships based on the total sales amount, using window functions:

WITH total_dealership_sales AS
(
SELECT dealership_id,
SUM(sales_amount) AS total_sales_amount
FROM sales
WHERE sales_transaction_date>='2018-01-01'
AND sales_transaction_date<'2019-01-01'
AND channel='dealership'
GROUP BY 1
)

SELECT *,
NTILE(10) OVER (ORDER BY total_sales_amount)
FROM total_dealership_sales;

The following is the output of the preceding code:

Figure 5.17: Decile for dealership sales amount
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Chapter 6: Importing and Exporting Data

Activity 8: Using an External Dataset to Discover Sales Trends

Solution

1.	 The dataset can be downloaded from GitHub using the link provided. Once you go 
to the web page, you should be able to Save Page As… using the menus on your 
browser:

Figure 6.24: Saving the public transportation .csv file

2.	 The simplest way to transfer the data in a CSV file to pandas is to create a new 
Jupyter notebook. At the command line, type jupyter notebook (if you do not have 
a notebook server running already). In the browser window that pops up, create 
a new Python 3 notebook. In the first cell, you can type in the standard import 
statements and the connection information (replacing your_X with the appropriate 
parameter for your database connection):

from sqlalchemy import create_engine
import pandas as pd
% matplotlib inline

cnxn_string = ("postgresql+psycopg2://{username}:{pswd}"
               "@{host}:{port}/{database}")

engine = create_engine(cnxn_string.format(
    username="your_username", 
    pswd="your_password", 
    host="your_host", 
    port=5432,
    database="your_db"))
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3.	 We can read in the data using a command such as the following (replacing the path 
specified with the path to the file on your local computer):

data = pd.read_csv("~/Downloads/public_transportation'_statistics_by_zip_
code.csv", dtype={'zip_code':str})

Check that the data looks correct by creating a new cell, entering data, and then 
hitting Shift + Enter to see the contents of data. You can also use data.head() to 
see just the first few rows:

Figure 6.25: Reading the public transportation data into pandas

4.	 Now, we can transfer data to our database using data.to_sql():

import csv
from io import StringIO

def psql_insert_copy(table, conn, keys, data_iter):
    # gets a DBAPI connection that can provide a cursor
    dbapi_conn = conn.connection
    with dbapi_conn.cursor() as cur:
        s_buf = StringIO()
        writer = csv.writer(s_buf)
        writer.writerows(data_iter)
        s_buf.seek(0)

        columns = ', '.join('"{}"'.format(k) for k in keys)
        if table.schema:
            table_name = '{}.{}'.format(table.schema, table.name)
        else:
            table_name = table.name
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        sql = 'COPY {} ({}) FROM STDIN WITH CSV'.format(
            table_name, columns)
        cur.copy_expert(sql=sql, file=s_buf)

data.to_sql('public_transportation_by_zip', engine, if_exists='replace', 
method=psql_insert_copy)

5.	 Looking at the maximum and minimum values, we do see something strange: the 
minimum value is -666666666. We can assume that these values are missing, and 
we can remove them from the dataset:

SELECT 
    MAX(public_transportation_pct) AS max_pct,
    MIN(public_transportation_pct) AS min_pct
FROM public_transportation_by_zip;

Figure 6.26: Screenshot showing minimum and maximum values

6.	 In order to calculate the requested sales amounts, we can run a query in our 
database. Note that we will have to filter out the erroneous percentages below 0 
based on our analysis in step 6. There are several ways to do this, but this single 
statement would work:

SELECT 
    (public_transportation_pct > 10) AS is_high_public_transport,
    COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT c.customer_id) AS sales_
per_customer 
FROM customers c
INNER JOIN public_transportation_by_zip t ON t.zip_code = c.postal_code
LEFT JOIN sales s ON s.customer_id = c.customer_id
WHERE public_transportation_pct >= 0
GROUP BY 1
;
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Here's an explanation of this query:

We can identify customers living in an area with public transportation by looking 
at the public transportation data associated with their postal code. If public_
transportation_pct > 10, then the customer is in a high public transportation 
area. We can group by this expression to identify the population that is or is not in 
a high public transportation area.

We can look at sales per customer by counting the sales (for example, using the 
COUNT(s.customer_id) aggregate) and dividing by the unique number of customers 
(for example, using the COUNT(DISTINCT c.customer_id) aggregate). We want 
to make sure that we retain fractional values, so we can multiply by 1.0 to cast 
the entire expression to a float: COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT 
c.customer_id).

In order to do this, we need to join our customer data to the public transportation 
data, and finally to the sales data. We need to exclude all zip codes where public_
transportation_pct is greater than, or equal to, 0 so that we exclude the missing 
data (denoted by -666666666).

Finally, we end with the following query:

Figure 6.27: Calculating the requested sales amount

From this, we see that customers in high public transportation areas have 12% 
more product purchases than customers in low public transportation areas.
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7.	 If we try to plot our data, we will get a strange distribution with two bars. This is 
because of the outlier values that we discovered in step 5. Instead, we can read 
this data from our database, and add a WHERE clause to remove the outlier values:

data = pd.read_sql_query('SELECT * FROM public_transportation_by_zip WHERE 
public_transportation_pct > 0 AND public_transportation_pct < 50', engine)
data.plot.hist(y='public_transportation_pct')

Figure 6.28: Jupyter notebook with analysis of the public transportation data
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8.	 We can then rerun our command from step 5 to get the timing of the standard 
to_sql() function:

data.to_sql('public_transportation_by_zip', engine, if_exists='replace')

Figure 6.29: Inserting records with COPY and without COPY is much faster

9.	 For this analysis, we can actually tweak the query from step 7:

CREATE TEMP VIEW public_transport_statistics AS (
    SELECT
        10 * ROUND(public_transportation_pct/10) AS public_transport,
        COUNT(s.customer_id) * 1.0 / COUNT(DISTINCT c.customer_id) AS 
sales_per_customer 
    FROM customers c
    INNER JOIN public_transportation_by_zip t ON t.zip_code = c.postal_
code
    LEFT JOIN sales s ON s.customer_id = c.customer_id
    WHERE public_transportation_pct >= 0
    GROUP BY 1
);
\copy (SELECT * FROM public_transport_statistics) TO 'public_transport_
distribution.csv' CSV HEADER;
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First, we want to wrap our query in a temporary view, public_transport_
statistics, so that we easily write the result to a CSV file later. 

Next is the tricky part: we want to aggregate the public transportation statistics 
somehow. What we can do is round this percentage to the nearest 10%, so 22% 
would become 20%, and 39% would become 40%. We can do this by dividing 
the percentage number (represented as 0.0-100.0) by 10, rounding off, and then 
multiplying back by 10: 10 * ROUND(public_transportation_pct/10).

The logic for the remainder of the query is explained in step 6.

10.	 Next, we open up the public_transport_distribution.csv file in Excel:

Figure 6.30: Excel workbook containing the data from our query
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After creating the scatterplot, we get the following result, which shows a clear 
positive relationship between public transportation and sales in the geographical 
area:

Figure 6.31: Sales per customer versus public transportation percentage

Based on all this analysis, we can say that there is a positive relationship between 
geographies with public transportation and demand for electric vehicles. 
Intuitively, this makes sense, because electric vehicles could provide an alternative 
transportation option to public transport for getting around cities. As a result of 
this analysis, we would recommend that ZoomZoom management should consider 
expanding in regions with high public transportation and urban areas.
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Chapter 7: Analytics Using Complex Data Types

Activity 9: Sales Search and Analysis

Solution

1.	 First, create the materialized view on the customer_sales table:

CREATE MATERIALIZED VIEW customer_search AS (
    SELECT 
        customer_json -> 'customer_id' AS customer_id,
        customer_json,
        to_tsvector('english', customer_json) AS search_vector
    FROM customer_sales
);

2.	 Create the GIN index on the view:

CREATE INDEX customer_search_gin_idx ON customer_search USING GIN(search_
vector);

3.	 We can solve the request by using our new searchable database:

SELECT
    customer_id,
    customer_json
FROM customer_search 
WHERE search_vector @@ plainto_tsquery('english', 'Danny Bat');

This results in eight matching rows:

Figure 7.29: Resulting matches for our "Danny Bat" query
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In this complex task, we need to find customers who match with both a scooter 
and an automobile. That means we need to perform a query for each combination 
of scooter and automobile. 

4.	 We need to produce the unique list of scooters and automobiles (and remove 
limited editions releases) using DISTINCT:

SELECT DISTINCT 
    p1.model, 
    p2.model
FROM products p1 
LEFT JOIN products p2 ON TRUE 
WHERE p1.product_type = 'scooter' 
AND p2.product_type = 'automobile' 
AND p1.model NOT ILIKE '%Limited Edition%';

This produces the following output:

Figure 7.30: All combinations of scooters and automobiles

5.	 Next, we need to transform the output into the query:

SELECT DISTINCT 
    plainto_tsquery('english', p1.model) && 
    plainto_tsquery('english', p2.model) 
FROM products p1 
LEFT JOIN products p2 ON TRUE 
WHERE p1.product_type = 'scooter' 
AND p2.product_type = 'automobile' 
AND p1.model NOT ILIKE '%Limited Edition%';
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This produces the following result:

Figure 7.31: Queries for each scooter and automobile combination

6.	 Query our database using each of these tsquery objects, and count the 
occurrences for each object:

SELECT 
    sub.query, 
    (
        SELECT COUNT(1) 
        FROM customer_search
        WHERE customer_search.search_vector @@ sub.query)
FROM (
    SELECT DISTINCT 
        plainto_tsquery('english', p1.model) && 
        plainto_tsquery('english', p2.model) AS query
    FROM products p1 
    LEFT JOIN products p2 ON TRUE 
    WHERE p1.product_type = 'scooter' 
    AND p2.product_type = 'automobile' 
    AND p1.model NOT ILIKE '%Limited Edition%'
) sub 
ORDER BY 2 DESC;
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The following is the output of the preceding query:

Figure 7.32: Customer counts for each scooter and automobile combination

While there could be a multitude of factors at play here, we see that the lemon 
scooter and the model sigma automobile is the combination most frequently 
purchased together, followed by the lemon and model chi. The bat is also fairly 
frequently purchased with both of those models, as well as the model epsilon. The 
other combinations are much less common, and it seems that customers rarely 
purchase the lemon zester, the blade, and the model gamma.
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Chapter 8: Performant SQL

Activity 10: Query Planning

Solution:

1.	 Open PostgreSQL and connect to the sqlda database:

C:\> psql sqlda

2.	 Use the EXPLAIN command to return the query plan for selecting all available 
records within the customers table:

sqlda=# EXPLAIN SELECT * FROM customers;

This query will produce the following output from the planner:

Figure 8.75: Plan for all records within the customers table

The setup cost is 0, the total query cost is 1536, the number of rows is 50000, and 
the width of each row is 140. The cost is actually in cost units, the number of rows 
is in rows, and the width is in bytes.

3.	 Repeat the query from step 2 of this activity, this time limiting the number of 
returned records to 15:

sqlda=# EXPLAIN SELECT * FROM customers LIMIT 15;

This query will produce the following output from the planner:

Figure 8.76: Plan for all records within the customers table with the limit as 15

Two steps are involved in the query, and the limiting step costs 0.46 units within 
the plan.
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4.	 Generate the query plan, selecting all rows where customers live within a latitude 
of 30 and 40 degrees:

sqlda=# EXPLAIN SELECT * FROM customers WHERE latitude > 30 and latitude < 
40;

This query will produce the following output from the planner:

Figure 8.77: Plan for customers living within a latitude of 30 and 40 degrees

The total plan cost is 1786 units, and it returns 26439 rows.

Activity 11: Implementing Index Scans

Solution:

1.	 Use the EXPLAIN and ANALYZE commands to profile the query plan to search for all 
records with an IP address of 18.131.58.65:

EXPLAIN ANALYZE SELECT * FROM customers WHERE ip_address = '18.131.58.65';

The following output will be displayed:

Figure 8.78: Sequential scan with a filter on ip_address

The query takes 0.191 ms to plan and 15.625 ms to execute.

2.	 Create a generic index based on the IP address column:

CREATE INDEX ON customers(ip_address);

3.	 Rerun the query of step 1 and note the time it takes to execute:

EXPLAIN ANALYZE SELECT * FROM customers WHERE ip_address = '18.131.58.65';
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The following is the output of the preceding code:

 

Figure 8.79: Index scan with a filter on ip_address

The query takes 0.467 ms to plan and 0.123 ms to execute.

4.	 Create a more detailed index based on the IP address column with the condition 
that the IP address is 18.131.58.65:

CREATE INDEX ix_ip_where ON customers(ip_address) WHERE ip_address = 
'18.131.58.65';

5.	 Rerun the query of step 1 and note the time it takes to execute.

EXPLAIN ANALYZE SELECT * FROM customers WHERE ip_address = '18.131.58.65';

The following is the output of the preceding code:

Figure 8.80: Query plan with reduced execution time due to a more specific index

The query takes 0.458 ms to plan and 0.056 ms to execute. We can see that both 
indices took around the same amount of time to plan, with the index that specifies 
the exact IP address being much faster to execute and slightly quicker to plan as 
well.

6.	 Use the EXPLAIN and ANALYZE commands to profile the query plan to search for all 
records with a suffix of Jr: 

EXPLAIN ANALYZE SELECT * FROM customers WHERE suffix = 'Jr';

The following output will be displayed:

Figure 8.81: Query plan of sequential scan filtering using a suffix
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The query takes 0.153 ms of planning and 14.238 ms of execution.

7.	 Create a generic index based on the suffix address column:

CREATE INDEX ix_jr ON customers(suffix);

8.	 Rerun the query of step 6 and note the time it takes to execute:

EXPLAIN ANALYZE SELECT * FROM customers WHERE suffix = 'Jr';

The following output will be displayed:

Figure 8.82: Query plan of the scan after creating an index on the suffix column

Again, the planning time is significantly elevated, but this cost is more than 
outweighed by the improvement in the execution time, which is reduced from 
14.238 ms to 0.511 ms.

Activity 12: Implementing Hash Indexes

Solution

1.	 Use the EXPLAIN and ANALYZE commands to determine the planning time and 
cost, as well as the execution time and cost, of selecting all rows where the email 
subject is Shocking Holiday Savings On Electric Scooters:

EXPLAIN ANALYZE SELECT * FROM emails where email_subject='Shocking Holiday 
Savings On Electric Scooters';

The following output will be displayed:

Figure 8.83: Performance of sequential scan on the emails table

The planning time is 0.117 ms and the execution time is 119.801ms. There is no cost 
in setting up the query, but there is a cost of 10,652 in executing it.
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2.	 Use the EXPLAIN and ANALYZE commands to determine the planning time and 
cost, as well as the execution time and cost, of selecting all rows where the email 
subject is Black Friday. Green Cars.:

EXPLAIN ANALYZE SELECT * FROM emails where email_subject='Black Friday. 
Green Cars.';

The following output will be displayed:

Figure 8.84: Performance of a sequential scan looking for different email subject values

Approximately 0.097 ms is spent on planning the query, with 127.736 ms being 
spent on executing it. This elevated execution time can be partially attributed to 
an increase in the number of rows being returned. Again, there is no setup cost, 
but a similar execution cost of 10,652.

3.	 Create a hash scan of the email subject field:

CREATE INDEX ix_email_subject ON emails USING HASH(email_subject);

4.	 Repeat step 1 from the solution and compare both the outputs:

EXPLAIN ANALYZE SELECT * FROM emails where email_subject='Shocking Holiday 
Savings On Electric Scooters';

The following output will be displayed:

Figure 8.85: Output of the query planner using a hash index

The query plan shows that our newly created hash index is being used and has 
significantly reduced the execution time by over 100 ms, as well as the cost. There 
is a minor increase in the planning time and planning cost, all of which is easily 
outweighed by the reduction in execution time.
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5.	 Repeat step 2 from the solution and compare both the outputs:

EXPLAIN ANALYZE SELECT * FROM emails where email_subject='Black Friday. 
Green Cars.';

The following is the output of the preceding code:

Figure 8.86: Output of the query planner for a less-performant hash index

Again, we can see a reduction in both planning and execution expenses. However, 
the reductions in the "Black Friday…" search are not as good as those achieved in 
the "Shocking Holiday Savings..." search. If we look in more detail, we can see that 
the scan on the index is approximately two times longer, but there are also about 
twice as many records in the latter example. From this, we can conclude that the 
increase is simply due to the increase in the number of records being returned by 
the query.

6.	 Create a hash scan of the customer_id field:

CREATE INDEX ix_customer_id ON emails USING HASH(customer_id);

7.	 Use EXPLAIN and ANALYZE to estimate the time required to select all rows with a 
customer_id value greater than 100. What type of scan was used and why?

EXPLAIN ANALYZE SELECT * FROM emails WHERE customer_id > 100;

The following output will be displayed:

Figure 8.87: Query planner ignoring the hash index due to limitations

So, the final execution time comes to 152.656ms and the planning time comes to 
0.199ms.
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Activity 13: Implementing Joins

Solution

1.	 Open PostgreSQL and connect to the sqlda database:

$ psql sqlda

2.	 Determine a list of customers (customer_id, first_name, and last_name) who had 
been sent an email, including information for the subject of the email and whether 
they opened and clicked on the email. The resulting table should include the 
customer_id, first_name, last_name, email_subject, opened, and clicked columns.

sqlda=# SELECT customers.customer_id, customers.first_name, customers.
last_name, emails.opened, emails.clicked FROM customers INNER JOIN emails 
ON customers.customer_id=emails.customer_id;

The following screenshot shows the output of the preceding code:

Figure 8.88: Customers and emails join

3.	 Save the resulting table to a new table, customer_emails:

sqlda=# SELECT customers.customer_id, customers.first_name, customers.last_
name, emails.opened, emails.clicked INTO customer_emails FROM customers 
INNER JOIN emails ON customers.customer_id=emails.customer_id; 

4.	 Find those customers who opened or clicked on an email:

SELECT * FROM customer_emails WHERE clicked='t' and opened='t';
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The following figure shows the output of the preceding code:

Figure 8.89: Customers who had clicked on and opened emails

5.	 Find the customers who have a dealership in their city; customers who do not 
have a dealership in their city should have a blank value for the city column:

sqlda=# SELECT customers.customer_id, customers.first_name, customers.last_
name, customers.city FROM customers LEFT JOIN dealerships on customers.
city=dealerships.city;

This will display the following output:

Figure 8.90: Left join of customers and dealerships
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6.	 Save these results to a table called customer_dealers:

sqlda=# SELECT customers.customer_id, customers.first_name, customers.
last_name, customers.city INTO customer_dealers FROM customers LEFT JOIN 
dealerships on customers.city=dealerships.city;

7.	 List those customers who do not have dealers in their city (hint: a blank field is 
NULL):

sqlda=# SELECT * from customer_dealers WHERE city is NULL;

The following figure shows the output of the preceding code:

Figure 8.91: Customers without city information

The output shows the final list of customers in the cities where we have no 
dealerships.

Activity 14: Defining a Maximum Sale Function

Solution:

1.	 Connect to the sqlda database:

$ psql sqlda

2.	 Create a function called max_sale that does not take any input arguments but 
returns a numeric value called big_sale:

sqlda=# CREATE FUNCTION max_sale() RETURNS integer AS $big_sale$

3.	 Declare the big_sale variable and begin the function:

sqlda$# DECLARE big_sale numeric;
sqlda$# BEGIN
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4.	 Insert the maximum sale amount into the big_sale variable:

sqlda$# SELECT MAX(sales_amount) INTO big_sale FROM sales;

5.	 Return the value for big_sale:

sqlda$# RETURN big_sale; 

6.	 Close out the function with the LANGUAGE statement:

sqlda$# END; $big_sale$
sqlda-# LANGUAGE PLPGSQL;

7.	 Call the function to find what the biggest sale amount in the database is:

sqlda=# SELECT MAX(sales_amount) FROM sales;

The following figure shows the output of the preceding code:

Figure 8.92: Output of the maximum sales function call

The output is created from a function that determines the highest sale amount, 
that is, 115000, in the database.

Activity 15: Creating Functions with Arguments

Solution

1.	 Create the function definition for a function called avg_sales_window that returns a 
numeric value and takes a DATE value to specify the date in the form YYYY-MM-DD:

sqlda=# CREATE FUNCTION avg_sales_window(from_date DATE, to_date DATE) 
RETURNS numeric AS $sales_avg$

2.	 Declare the return variable as a numeric data type and begin the function:

sqlda$# DECLARE sales_avg numeric;
sqlda$# BEGIN 

3.	 Select the average sales amount into the return variable where the sales 
transaction date is greater than the specified date:

sqlda$# SELECT AVG(sales_amount) FROM sales INTO sales_avg WHERE sales_
transaction_date > from_date AND sales_transaction_date < to_date;
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4.	 Return the function variable, end the function, and specify the LANGUAGE statement:

sqlda$# RETURN sales_avg;
sqlda$# END; $channel_avg$
sqlda-# LANGUAGE PLPGSQL; 

5.	 Use the function to determine the average sales value since 2013-04-12:

sqlda=# SELECT avg_sales_window('2013-04-12', '2014-04-12');

The following figure shows the output of the preceding code:

Figure 8.93: Output of average sales since the function call

The final output shows the average sales within specific dates, which comes to 
around 477.687.

Activity 16: Creating a Trigger to Track Average Purchases

Solution

1.	 Connect to the smalljoins database:

$ psql smalljoins

2.	 Create a new table called avg_qty_log that is composed of an order_id integer 
field and an avg_qty numeric field:

smalljoins=# CREATE TABLE avg_qty_log (order_id integer, avg_qty numeric);

3.	 Create a function called avg_qty that does not take any arguments but returns a 
trigger. The function computes the average value for all order quantities (order_
info.qty) and inserts the average value along with the most recent order_id into 
avg_qty:

smalljoins=# CREATE FUNCTION avg_qty() RETURNS TRIGGER AS $_avg$
smalljoins$# DECLARE _avg numeric;
smalljoins$# BEGIN
smalljoins$# SELECT AVG(qty) INTO _avg FROM order_info;
smalljoins$# INSERT INTO avg_qty_log (order_id, avg_qty) VALUES (NEW.
order_id, _avg);
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smalljoins$# RETURN NEW;
smalljoins$# END; $_avg$
smalljoins-# LANGUAGE PLPGSQL; 

4.	 Create a trigger called avg_trigger that calls the avg_qty function AFTER each row 
is inserted into the order_info table:

smalljoins=# CREATE TRIGGER avg_trigger
smalljoins-# AFTER INSERT ON order_info
smalljoins-# FOR EACH ROW
smalljoins-# EXECUTE PROCEDURE avg_qty();

5.	 Insert some new rows into the order_info table with quantities of 6, 7, and 8:

smalljoins=# SELECT insert_order(3, 'GROG1', 6);
smalljoins=# SELECT insert_order(4, 'GROG1', 7);
smalljoins=# SELECT insert_order(1, 'GROG1', 8);

6.	 Look at the entries in avg_qty_log to see whether the average quantity of each 
order is increasing:

smalljoins=# SELECT * FROM avg_qty_log;

The following figure shows the output of the preceding code:

Figure 8.94: Average order quantity over time

With these orders and the entries in the log, we can see an increase in the average 
quantity of items per order.
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Activity 17: Terminating a Long Query

Solution

1.	 Launch two separate SQL interpreters:

C:\> psql sqlda

2.	 In the first terminal, execute the sleep command with a parameter of 1000 
seconds:

sqlda=# SELECT pg_sleep(1000);

3.	 In the second terminal, identify the process ID of the sleep query:

Figure 8.95: Finding the pid value of pg_sleep

4.	 Using the pid value, force the sleep command to terminate using the pg_
terminate_background command:

Sqlda=# SELECT pg_terminate_backend(14131);

The following figure shows the output of the preceding code:

Figure 8.96: Forcefully terminating pg_sleep

file:///C:\C:\
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5.	 Verify in the first terminal that the sleep command has been terminated. Notice 
the message returned by the interpreter:

Sqlda=# SELECT pg_sleep(1000);

This will display the following output:

Figure 8.97: Terminated pg_sleep process

We can see that the query is now terminated from the screenshot after using the 
pg_sleep command.
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Chapter 9: Using SQL to Uncover the Truth – a Case Study

Activity 18: Quantifying the Sales Drop

Solution

1.	 Load the sqlda database:

$ psql sqlda

2.	 Compute the daily cumulative sum of sales using the OVER and ORDER BY 
statements. Insert the results into a new table called bat_sales_growth:

sqlda=# SELECT *, sum(count) OVER (ORDER BY sales_transaction_date) INTO 
bat_sales_growth FROM bat_sales_daily;

The following table shows the daily cumulative sum of sales:

Figure 9.48: Daily sales count

3.	 Compute a 7-day lag function of the sum column and insert all the columns of bat_
sales_daily and the new lag column into a new table, bat_sales_daily_delay. This 
lag column indicates what the sales were like 1 week before the given record:

sqlda=# SELECT *, lag(sum, 7) OVER (ORDER BY sales_transaction_date) INTO 
bat_sales_daily_delay FROM bat_sales_growth;
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4.	 Inspect the first 15 rows of bat_sales_growth:

sqlda=# SELECT * FROM bat_sales_daily_delay LIMIT 15;

The following is the output of the preceding code:

Figure 9.49: Daily sales delay with lag

5.	 Compute the sales growth as a percentage, comparing the current sales volume 
to that of 1 week prior. Insert the resulting table into a new table called bat_sales_
delay_vol:

sqlda=# SELECT *, (sum-lag)/lag AS volume INTO bat_sales_delay_vol FROM 
bat_sales_daily_delay ;

Note

The percentage sales volume can be calculated via the following equation: 

(new_volume – old_volume) / old_volume

6.	 Compare the first 22 values of the bat_sales_delay_vol table:

sqlda=# SELECT * FROM bat_sales_daily_delay_vol LIMIT 22;



356 | Appendix

The delay volume for the first 22 entries can be seen in the following:

Figure 9.50: Relative sales volume of the scooter over 3 weeks

Looking at the output table, we can see four sets of information: the daily sales 
count, the cumulative sum of the daily sales count, the cumulative sum offset by 1 
week (the lag), and the relative daily sales volume.

Activity 19: Analyzing the Difference in the Sales Price Hypothesis

Solution

1.	 Load the sqlda database:

$ psql sqlda

2.	 Select the sales_transaction_date column from the 2013 Lemon sales and insert the 
column into a table called lemon_sales:

sqlda=# SELECT sales_transaction_date INTO lemon_sales FROM sales WHERE 
product_id=3;

3.	 Count the sales records available for the 2013 Lemon by running the following 
query:

sqlda=# SELECT count(sales_transaction_date) FROM lemon_sales;
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We can see that 16558 records are available:

Figure 9.51: Sales records for the 2013 Lemon Scooter

4.	 Use the max function to check the latest sales_transaction_date column:

sqlda=# SELECT max(sales_transaction_date) FROM lemon_sales;

The following figure displays the sales_transaction_date column:

Figure 9.52: Production between May 2013 and December 2018

5.	 Convert the sales_transaction_date column to a date type using the following 
query:

sqlda=# ALTER TABLE lemon_sales ALTER COLUMN sales_transaction_date TYPE 
DATE;

We are converting the datatype from DATE_TIME to DATE so as to remove the time 
information from the field. We are only interested in accumulating numbers, 
but just the date and not the time. Hence, it is easier just to remove the time 
information from the field.

6.	 Count the number of sales per day within the lemon_sales table and insert this 
figure into a table called lemon_sales_count:

sqlda=# SELECT *, COUNT(sales_transaction_date) INTO lemon_sales_count 
FROM lemon_sales GROUP BY sales_transaction_date,lemon_sales.customer_id 
ORDER BY sales_transaction_date;

7.	 Calculate the cumulative sum of sales and insert the corresponding table into a 
new table labeled lemon_sales_sum:

sqlda=# SELECT *, sum(count) OVER (ORDER BY sales_transaction_date) INTO 
lemon_sales_sum FROM lemon_sales_count;
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8.	 Compute the 7-day lag function on the sum column and save the result to lemon_
sales_delay:

sqlda=# SELECT *, lag(sum, 7) OVER (ORDER BY sales_transaction_date) INTO 
lemon_sales_delay FROM lemon_sales_sum;

9.	 Calculate the growth rate using the data from lemon_sales_delay and store the 
resulting table in lemon_sales_growth. Label the growth rate column as volume:

sqlda=# SELECT *, (sum-lag)/lag AS volume INTO lemon_sales_growth FROM 
lemon_sales_delay;

10.	 Inspect the first 22 records of the lemon_sales_growth table by examining the 
volume data:

sqlda=# SELECT * FROM lemon_sales_growth LIMIT 22;

The following table shows the sales growth:

Figure 9.53: Sales growth of the Lemon Scooter

Similar to the previous exercise, we have calculated the cumulative sum, lag, 
and relative sales growth of the Lemon Scooter. We can see that the initial sales 
volume is much larger than the other scooters, at over 800%, and again finishes 
higher at 55%
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